JeVoisBase  1.22
JeVois Smart Embedded Machine Vision Toolkit Base Modules
Share this page:
Loading...
Searching...
No Matches
demo.py
Go to the documentation of this file.
1# This file is part of OpenCV Zoo project.
2# It is subject to the license terms in the LICENSE file found in the same directory.
3#
4# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
5# Third party copyrights are property of their respective owners.
6
7import argparse
8
9import numpy as np
10import cv2 as cv
11
12from ppresnet import PPResNet
13
14def str2bool(v):
15 if v.lower() in ['on', 'yes', 'true', 'y', 't']:
16 return True
17 elif v.lower() in ['off', 'no', 'false', 'n', 'f']:
18 return False
19 else:
20 raise NotImplementedError
21
22backends = [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_BACKEND_CUDA]
23targets = [cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16]
24help_msg_backends = "Choose one of the computation backends: {:d}: OpenCV implementation (default); {:d}: CUDA"
25help_msg_targets = "Chose one of the target computation devices: {:d}: CPU (default); {:d}: CUDA; {:d}: CUDA fp16"
26try:
27 backends += [cv.dnn.DNN_BACKEND_TIMVX]
28 targets += [cv.dnn.DNN_TARGET_NPU]
29 help_msg_backends += "; {:d}: TIMVX"
30 help_msg_targets += "; {:d}: NPU"
31except:
32 print('This version of OpenCV does not support TIM-VX and NPU. Visit https://gist.github.com/fengyuentau/5a7a5ba36328f2b763aea026c43fa45f for more information.')
33
34parser = argparse.ArgumentParser(description='Deep Residual Learning for Image Recognition (https://arxiv.org/abs/1512.03385, https://github.com/PaddlePaddle/PaddleHub)')
35parser.add_argument('--input', '-i', type=str, help='Path to the input image.')
36parser.add_argument('--model', '-m', type=str, default='image_classification_ppresnet50_2022jan.onnx', help='Path to the model.')
37parser.add_argument('--backend', '-b', type=int, default=backends[0], help=help_msg_backends.format(*backends))
38parser.add_argument('--target', '-t', type=int, default=targets[0], help=help_msg_targets.format(*targets))
39parser.add_argument('--label', '-l', type=str, default='./imagenet_labels.txt', help='Path to the dataset labels.')
40args = parser.parse_args()
41
42if __name__ == '__main__':
43 # Instantiate ResNet
44 model = PPResNet(modelPath=args.model, labelPath=args.label, backendId=args.backend, targetId=args.target)
45
46 # Read image and get a 224x224 crop from a 256x256 resized
47 image = cv.imread(args.input)
48 image = cv.cvtColor(image, cv.COLOR_BGR2RGB)
49 image = cv.resize(image, dsize=(256, 256))
50 image = image[16:240, 16:240, :]
51
52 # Inference
53 result = model.infer(image)
54
55 # Print result
56 print('label: {}'.format(result))
57