JeVoisBase  1.22
JeVois Smart Embedded Machine Vision Toolkit Base Modules
Share this page:
Loading...
Searching...
No Matches
demo.py
Go to the documentation of this file.
1import argparse
2
3import numpy as np
4import cv2 as cv
5
6from mp_palmdet import MPPalmDet
7
8def str2bool(v):
9 if v.lower() in ['on', 'yes', 'true', 'y', 't']:
10 return True
11 elif v.lower() in ['off', 'no', 'false', 'n', 'f']:
12 return False
13 else:
14 raise NotImplementedError
15
16backends = [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_BACKEND_CUDA]
17targets = [cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16]
18help_msg_backends = "Choose one of the computation backends: {:d}: OpenCV implementation (default); {:d}: CUDA"
19help_msg_targets = "Chose one of the target computation devices: {:d}: CPU (default); {:d}: CUDA; {:d}: CUDA fp16"
20try:
21 backends += [cv.dnn.DNN_BACKEND_TIMVX]
22 targets += [cv.dnn.DNN_TARGET_NPU]
23 help_msg_backends += "; {:d}: TIMVX"
24 help_msg_targets += "; {:d}: NPU"
25except:
26 print('This version of OpenCV does not support TIM-VX and NPU. Visit https://gist.github.com/fengyuentau/5a7a5ba36328f2b763aea026c43fa45f for more information.')
27
28parser = argparse.ArgumentParser(description='Hand Detector from MediaPipe')
29parser.add_argument('--input', '-i', type=str, help='Path to the input image. Omit for using default camera.')
30parser.add_argument('--model', '-m', type=str, default='./palm_detection_mediapipe_2022may.onnx', help='Path to the model.')
31parser.add_argument('--backend', '-b', type=int, default=backends[0], help=help_msg_backends.format(*backends))
32parser.add_argument('--target', '-t', type=int, default=targets[0], help=help_msg_targets.format(*targets))
33parser.add_argument('--score_threshold', type=float, default=0.99, help='Filter out faces of confidence < conf_threshold. An empirical score threshold for the quantized model is 0.49.')
34parser.add_argument('--nms_threshold', type=float, default=0.3, help='Suppress bounding boxes of iou >= nms_threshold.')
35parser.add_argument('--save', '-s', type=str, default=False, help='Set true to save results. This flag is invalid when using camera.')
36parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Set true to open a window for result visualization. This flag is invalid when using camera.')
37args = parser.parse_args()
38
39def visualize(image, score, palm_box, palm_landmarks, fps=None):
40 output = image.copy()
41
42 if fps is not None:
43 cv.putText(output, 'FPS: {:.2f}'.format(fps), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
44
45 # put score
46 palm_box = palm_box.astype(np.int32)
47 cv.putText(output, '{:.4f}'.format(score), (palm_box[0], palm_box[1]+12), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 255, 0))
48
49 # draw box
50 cv.rectangle(output, (palm_box[0], palm_box[1]), (palm_box[2], palm_box[3]), (0, 255, 0), 2)
51
52 # draw points
53 palm_landmarks = palm_landmarks.astype(np.int32)
54 for p in palm_landmarks:
55 cv.circle(output, p, 2, (0, 0, 255), 2)
56
57 return output
58
59if __name__ == '__main__':
60 # Instantiate MPPalmDet
61 model = MPPalmDet(modelPath=args.model,
62 nmsThreshold=args.nms_threshold,
63 scoreThreshold=args.score_threshold,
64 backendId=args.backend,
65 targetId=args.target)
66
67 # If input is an image
68 if args.input is not None:
69 image = cv.imread(args.input)
70
71 # Inference
72 score, palm_box, palm_landmarks = model.infer(image)
73 if score is None or palm_box is None or palm_landmarks is None:
74 print('Hand not detected')
75 else:
76 # Print results
77 print('score: {:.2f}'.format(score))
78 print('palm box: {}'.format(palm_box))
79 print('palm_landmarks: ')
80 for plm in enumerate(palm_landmarks):
81 print('\t{}'.format(plm))
82
83 # Draw results on the input image
84 image = visualize(image, score, palm_box, palm_landmarks)
85
86 # Save results if save is true
87 if args.save:
88 print('Resutls saved to result.jpg\n')
89 cv.imwrite('result.jpg', image)
90
91 # Visualize results in a new window
92 if args.vis:
93 cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
94 cv.imshow(args.input, image)
95 cv.waitKey(0)
96 else: # Omit input to call default camera
97 deviceId = 0
98 cap = cv.VideoCapture(deviceId)
99
100 tm = cv.TickMeter()
101 while cv.waitKey(1) < 0:
102 hasFrame, frame = cap.read()
103 if not hasFrame:
104 print('No frames grabbed!')
105 break
106
107 # Inference
108 tm.start()
109 score, palm_box, palm_landmarks = model.infer(frame)
110 tm.stop()
111
112 # Draw results on the input image
113 if score is not None and palm_box is not None and palm_landmarks is not None:
114 frame = visualize(frame, score, palm_box, palm_landmarks, fps=tm.getFPS())
115
116 # Visualize results in a new Window
117 cv.imshow('MPPalmDet Demo', frame)
118
119 tm.reset()
120
visualize(image, results, box_color=(0, 255, 0), text_color=(0, 0, 255), fps=None)
Definition demo.py:46