JeVoisBase  1.22
JeVois Smart Embedded Machine Vision Toolkit Base Modules
Share this page:
Loading...
Searching...
No Matches
crnn.py
Go to the documentation of this file.
1# This file is part of OpenCV Zoo project.
2# It is subject to the license terms in the LICENSE file found in the same directory.
3#
4# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
5# Third party copyrights are property of their respective owners.
6
7import numpy as np
8import cv2 as cv
9
10class CRNN:
11 def __init__(self, modelPath, charsetPath, backendId=0, targetId=0):
12 self._model_path = modelPath
13 self._charsetPath = charsetPath
14 self._backendId = backendId
15 self._targetId = targetId
16
17 self._model = cv.dnn.readNet(self._model_path)
18 self._model.setPreferableBackend(self._backendId)
19 self._model.setPreferableTarget(self._targetId)
20
22 self._inputSize = [100, 32] # Fixed
23 self._targetVertices = np.array([
24 [0, self._inputSize[1] - 1],
25 [0, 0],
26 [self._inputSize[0] - 1, 0],
27 [self._inputSize[0] - 1, self._inputSize[1] - 1]
28 ], dtype=np.float32)
29
30 @property
31 def name(self):
32 return self.__class__.__name__
33
34 def _load_charset(self, charsetPath):
35 charset = ''
36 with open(charsetPath, 'r') as f:
37 for char in f:
38 char = char.strip()
39 charset += char
40 return charset
41
42 def setBackend(self, backend_id):
43 self._backendId = backend_id
44 self._model.setPreferableBackend(self._backendId)
45
46 def setTarget(self, target_id):
47 self._targetId = target_id
48 self._model.setPreferableTarget(self._targetId)
49
50 def _preprocess(self, image, rbbox):
51 # Remove conf, reshape and ensure all is np.float32
52 vertices = rbbox.reshape((4, 2)).astype(np.float32)
53
54 rotationMatrix = cv.getPerspectiveTransform(vertices, self._targetVertices)
55 cropped = cv.warpPerspective(image, rotationMatrix, self._inputSize)
56
57 if 'CN' in self._model_path:
58 pass
59 else:
60 cropped = cv.cvtColor(cropped, cv.COLOR_BGR2GRAY)
61
62 return cv.dnn.blobFromImage(cropped, size=self._inputSize, mean=127.5, scalefactor=1 / 127.5)
63
64 def infer(self, image, rbbox):
65 # Preprocess
66 inputBlob = self._preprocess_preprocess(image, rbbox)
67
68 # Forward
69 self._model.setInput(inputBlob)
70 outputBlob = self._model.forward()
71
72 # Postprocess
73 results = self._postprocess_postprocess(outputBlob)
74
75 return results
76
77 def _postprocess(self, outputBlob):
78 '''Decode charaters from outputBlob
79 '''
80 text = ''
81 for i in range(outputBlob.shape[0]):
82 c = np.argmax(outputBlob[i][0])
83 if c != 0:
84 text += self._charset[c - 1]
85 else:
86 text += '-'
87
88 # adjacent same letters as well as background text must be removed to get the final output
89 char_list = []
90 for i in range(len(text)):
91 if text[i] != '-' and (not (i > 0 and text[i] == text[i - 1])):
92 char_list.append(text[i])
93 return ''.join(char_list)
94
name(self)
Definition crnn.py:31
_inputSize
Definition crnn.py:22
_charsetPath
Definition crnn.py:13
_backendId
Definition crnn.py:14
_load_charset(self, charsetPath)
Definition crnn.py:34
_postprocess(self, outputBlob)
Definition crnn.py:77
setBackend(self, backend_id)
Definition crnn.py:42
_charset
Definition crnn.py:21
_preprocess(self, image, rbbox)
Definition crnn.py:50
setTarget(self, target_id)
Definition crnn.py:46
_model_path
Definition crnn.py:12
_targetId
Definition crnn.py:15
_targetVertices
Definition crnn.py:23
__init__(self, modelPath, charsetPath, backendId=0, targetId=0)
Definition crnn.py:11
infer(self, image, rbbox)
Definition crnn.py:64