JeVoisBase  1.22
JeVois Smart Embedded Machine Vision Toolkit Base Modules
Share this page:
Loading...
Searching...
No Matches
demo.py
Go to the documentation of this file.
1# This file is part of OpenCV Zoo project.
2# It is subject to the license terms in the LICENSE file found in the same directory.
3#
4# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
5# Third party copyrights are property of their respective owners.
6
7import sys
8import argparse
9
10import numpy as np
11import cv2 as cv
12
13from crnn import CRNN
14
15sys.path.append('../text_detection_db')
16from db import DB
17
18def str2bool(v):
19 if v.lower() in ['on', 'yes', 'true', 'y', 't']:
20 return True
21 elif v.lower() in ['off', 'no', 'false', 'n', 'f']:
22 return False
23 else:
24 raise NotImplementedError
25
26backends = [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_BACKEND_CUDA]
27targets = [cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16]
28help_msg_backends = "Choose one of the computation backends: {:d}: OpenCV implementation (default); {:d}: CUDA"
29help_msg_targets = "Chose one of the target computation devices: {:d}: CPU (default); {:d}: CUDA; {:d}: CUDA fp16"
30try:
31 backends += [cv.dnn.DNN_BACKEND_TIMVX]
32 targets += [cv.dnn.DNN_TARGET_NPU]
33 help_msg_backends += "; {:d}: TIMVX"
34 help_msg_targets += "; {:d}: NPU"
35except:
36 print('This version of OpenCV does not support TIM-VX and NPU. Visit https://gist.github.com/fengyuentau/5a7a5ba36328f2b763aea026c43fa45f for more information.')
37
38parser = argparse.ArgumentParser(
39 description="An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition (https://arxiv.org/abs/1507.05717)")
40parser.add_argument('--input', '-i', type=str, help='Path to the input image. Omit for using default camera.')
41parser.add_argument('--model', '-m', type=str, default='text_recognition_CRNN_EN_2021sep.onnx', help='Path to the model.')
42parser.add_argument('--backend', '-b', type=int, default=backends[0], help=help_msg_backends.format(*backends))
43parser.add_argument('--target', '-t', type=int, default=targets[0], help=help_msg_targets.format(*targets))
44parser.add_argument('--charset', '-c', type=str, default='charset_36_EN.txt', help='Path to the charset file corresponding to the selected model.')
45parser.add_argument('--save', '-s', type=str, default=False, help='Set true to save results. This flag is invalid when using camera.')
46parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Set true to open a window for result visualization. This flag is invalid when using camera.')
47args = parser.parse_args()
48
49def visualize(image, boxes, texts, color=(0, 255, 0), isClosed=True, thickness=2):
50 output = image.copy()
51
52 pts = np.array(boxes[0])
53 output = cv.polylines(output, pts, isClosed, color, thickness)
54 for box, text in zip(boxes[0], texts):
55 cv.putText(output, text, (box[1].astype(np.int32)), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
56 return output
57
58if __name__ == '__main__':
59 # Instantiate CRNN for text recognition
60 recognizer = CRNN(modelPath=args.model, charsetPath=args.charset)
61 # Instantiate DB for text detection
62 detector = DB(modelPath='../text_detection_db/text_detection_DB_IC15_resnet18_2021sep.onnx',
63 inputSize=[736, 736],
64 binaryThreshold=0.3,
65 polygonThreshold=0.5,
66 maxCandidates=200,
67 unclipRatio=2.0,
68 backendId=args.backend,
69 targetId=args.target
70 )
71
72 # If input is an image
73 if args.input is not None:
74 image = cv.imread(args.input)
75 image = cv.resize(image, [args.width, args.height])
76
77 # Inference
78 results = detector.infer(image)
79 texts = []
80 for box, score in zip(results[0], results[1]):
81 texts.append(
82 recognizer.infer(image, box.reshape(8))
83 )
84
85 # Draw results on the input image
86 image = visualize(image, results, texts)
87
88 # Save results if save is true
89 if args.save:
90 print('Resutls saved to result.jpg\n')
91 cv.imwrite('result.jpg', image)
92
93 # Visualize results in a new window
94 if args.vis:
95 cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
96 cv.imshow(args.input, image)
97 cv.waitKey(0)
98 else: # Omit input to call default camera
99 deviceId = 0
100 cap = cv.VideoCapture(deviceId)
101
102 tm = cv.TickMeter()
103 while cv.waitKey(1) < 0:
104 hasFrame, frame = cap.read()
105 if not hasFrame:
106 print('No frames grabbed!')
107 break
108
109 frame = cv.resize(frame, [736, 736])
110 # Inference of text detector
111 tm.start()
112 results = detector.infer(frame)
113 tm.stop()
114 cv.putText(frame, 'Latency - {}: {:.2f}'.format(detector.name, tm.getFPS()), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
115 tm.reset()
116
117 # Inference of text recognizer
118 if len(results[0]) and len(results[1]):
119 texts = []
120 tm.start()
121 for box, score in zip(results[0], results[1]):
122 result = np.hstack(
123 (box.reshape(8), score)
124 )
125 texts.append(
126 recognizer.infer(frame, box.reshape(8))
127 )
128 tm.stop()
129 cv.putText(frame, 'Latency - {}: {:.2f}'.format(recognizer.name, tm.getFPS()), (0, 30), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
130 tm.reset()
131
132 # Draw results on the input image
133 frame = visualize(frame, results, texts)
134 print(texts)
135
136 # Visualize results in a new Window
137 cv.imshow('{} Demo'.format(recognizer.name), frame)
138
visualize(image, results, box_color=(0, 255, 0), text_color=(0, 0, 255), fps=None)
Definition demo.py:46