Yes, actually several versions of BLAS are already in there, see below. For deep networks, you may want to also look into lighter frameworks, line tiny-dnn or darknet, which may be less resource-intensive than tensorflow and also include optimizations for ARM processors using NEON (e.g., darknet-nnpack). We are implementing darknet YOLO now using darknet-nnpack and it is working quite well on JeVois (quite slow though, which hopefully we can improve using smaller networks).
itti@iLab1:~$ find /media/itti/LINUX/ -name *blas*
/media/itti/LINUX/usr/lib/python3.5/site-packages/numpy/core/tests/test_blasdot.py
/media/itti/LINUX/usr/lib/python3.5/site-packages/numpy/core/tests/test_blasdot.pyc
/media/itti/LINUX/usr/lib/python3.5/site-packages/numpy/core/_dotblas.cpython-35m-arm-linux-gnueabihf.so
/media/itti/LINUX/usr/lib/libblas.so.3.6.1
/media/itti/LINUX/usr/lib/libblas.so.3
/media/itti/LINUX/usr/lib/libopenblas.so.0
/media/itti/LINUX/usr/lib/libcblas.so
/media/itti/LINUX/usr/lib/libopenblas_armv7p-r0.2.19.dev.so
/media/itti/LINUX/usr/lib/libopenblas.so
/media/itti/LINUX/usr/lib/libgslcblas.so.0.0.0
/media/itti/LINUX/usr/lib/libblas.so
/media/itti/LINUX/usr/lib/libgslcblas.so.0
/media/itti/LINUX/usr/lib/libgslcblas.so
/media/itti/LINUX/usr/include/nnpack/blas.h