| 
		 JeVoisBase
		   1.23
		 
		JeVois Smart Embedded Machine Vision Toolkit Base Modules 
	       | 
	      
		
  | 
	    
Go to the source code of this file.
Namespaces | |
| namespace | demo | 
Functions | |
| demo.str2bool (v) | |
| demo.visualize (image, results, box_color=(0, 255, 0), text_color=(0, 0, 255), fps=None) | |
Variables | |
| list | demo.backends = [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_BACKEND_CUDA] | 
| list | demo.targets = [cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16] | 
| str | demo.help_msg_backends = "Choose one of the computation backends: {:d}: OpenCV implementation (default); {:d}: CUDA" | 
| str | demo.help_msg_targets = "Chose one of the target computation devices: {:d}: CPU (default); {:d}: CUDA; {:d}: CUDA fp16" | 
| demo.parser = argparse.ArgumentParser(description='YuNet: A Fast and Accurate CNN-based Face Detector (https://github.com/ShiqiYu/libfacedetection).') | |
| demo.type | |
| demo.str | |
| demo.help | |
| demo.default | |
| demo.int | |
| demo.float | |
| demo.False | |
| demo.str2bool | |
| demo.True | |
| demo.args = parser.parse_args() | |
| demo.model | |
| demo.image = cv.imread(args.input) | |
| demo.h = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT)) | |
| demo.w = int(cap.get(cv.CAP_PROP_FRAME_WIDTH)) | |
| demo._ | |
| demo.results = model.infer(image) | |
| int | demo.deviceId = 0 | 
| demo.cap = cv.VideoCapture(deviceId) | |
| demo.tm = cv.TickMeter() | |
| demo.hasFrame | |
| demo.frame = visualize(frame, results, fps=tm.getFPS()) | |