JeVoisBase  1.22
JeVois Smart Embedded Machine Vision Toolkit Base Modules
Share this page:
Loading...
Searching...
No Matches
demo.py
Go to the documentation of this file.
1# This file is part of OpenCV Zoo project.
2# It is subject to the license terms in the LICENSE file found in the same directory.
3#
4# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
5# Third party copyrights are property of their respective owners.
6
7import argparse
8
9import numpy as np
10import cv2 as cv
11
12from pphumanseg import PPHumanSeg
13
14def str2bool(v):
15 if v.lower() in ['on', 'yes', 'true', 'y', 't']:
16 return True
17 elif v.lower() in ['off', 'no', 'false', 'n', 'f']:
18 return False
19 else:
20 raise NotImplementedError
21
22backends = [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_BACKEND_CUDA]
23targets = [cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16]
24help_msg_backends = "Choose one of the computation backends: {:d}: OpenCV implementation (default); {:d}: CUDA"
25help_msg_targets = "Chose one of the target computation devices: {:d}: CPU (default); {:d}: CUDA; {:d}: CUDA fp16"
26try:
27 backends += [cv.dnn.DNN_BACKEND_TIMVX]
28 targets += [cv.dnn.DNN_TARGET_NPU]
29 help_msg_backends += "; {:d}: TIMVX"
30 help_msg_targets += "; {:d}: NPU"
31except:
32 print('This version of OpenCV does not support TIM-VX and NPU. Visit https://gist.github.com/fengyuentau/5a7a5ba36328f2b763aea026c43fa45f for more information.')
33
34parser = argparse.ArgumentParser(description='PPHumanSeg (https://github.com/PaddlePaddle/PaddleSeg/tree/release/2.2/contrib/PP-HumanSeg)')
35parser.add_argument('--input', '-i', type=str, help='Path to the input image. Omit for using default camera.')
36parser.add_argument('--model', '-m', type=str, default='human_segmentation_pphumanseg_2021oct.onnx', help='Path to the model.')
37parser.add_argument('--backend', '-b', type=int, default=backends[0], help=help_msg_backends.format(*backends))
38parser.add_argument('--target', '-t', type=int, default=targets[0], help=help_msg_targets.format(*targets))
39parser.add_argument('--save', '-s', type=str, default=False, help='Set true to save results. This flag is invalid when using camera.')
40parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Set true to open a window for result visualization. This flag is invalid when using camera.')
41args = parser.parse_args()
42
43def get_color_map_list(num_classes):
44 """
45 Returns the color map for visualizing the segmentation mask,
46 which can support arbitrary number of classes.
47
48 Args:
49 num_classes (int): Number of classes.
50
51 Returns:
52 (list). The color map.
53 """
54
55 num_classes += 1
56 color_map = num_classes * [0, 0, 0]
57 for i in range(0, num_classes):
58 j = 0
59 lab = i
60 while lab:
61 color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
62 color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
63 color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
64 j += 1
65 lab >>= 3
66 color_map = color_map[3:]
67 return color_map
68
69def visualize(image, result, weight=0.6, fps=None):
70 """
71 Convert predict result to color image, and save added image.
72
73 Args:
74 image (str): The input image.
75 result (np.ndarray): The predict result of image.
76 weight (float): The image weight of visual image, and the result weight is (1 - weight). Default: 0.6
77 fps (str): The FPS to be drawn on the input image.
78
79 Returns:
80 vis_result (np.ndarray): The visualized result.
81 """
82 color_map = get_color_map_list(256)
83 color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
84 color_map = np.array(color_map).astype(np.uint8)
85 # Use OpenCV LUT for color mapping
86 c1 = cv.LUT(result, color_map[:, 0])
87 c2 = cv.LUT(result, color_map[:, 1])
88 c3 = cv.LUT(result, color_map[:, 2])
89 pseudo_img = np.dstack((c1, c2, c3))
90
91 vis_result = cv.addWeighted(image, weight, pseudo_img, 1 - weight, 0)
92
93 if fps is not None:
94 cv.putText(vis_result, 'FPS: {:.2f}'.format(fps), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
95
96 return vis_result
97
98
99if __name__ == '__main__':
100 # Instantiate PPHumanSeg
101 model = PPHumanSeg(modelPath=args.model, backendId=args.backend, targetId=args.target)
102
103 if args.input is not None:
104 # Read image and resize to 192x192
105 image = cv.imread(args.input)
106 h, w, _ = image.shape
107 image = cv.cvtColor(image, cv.COLOR_BGR2RGB)
108 _image = cv.resize(image, dsize=(192, 192))
109
110 # Inference
111 result = model.infer(_image)
112 result = cv.resize(result[0, :, :], dsize=(w, h), interpolation=cv.INTER_NEAREST)
113
114 # Draw results on the input image
115 image = visualize(image, result)
116
117 # Save results if save is true
118 if args.save:
119 print('Results saved to result.jpg\n')
120 cv.imwrite('result.jpg', image)
121
122 # Visualize results in a new window
123 if args.vis:
124 cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
125 cv.imshow(args.input, image)
126 cv.waitKey(0)
127 else: # Omit input to call default camera
128 deviceId = 0
129 cap = cv.VideoCapture(deviceId)
130 w = int(cap.get(cv.CAP_PROP_FRAME_WIDTH))
131 h = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT))
132
133 tm = cv.TickMeter()
134 while cv.waitKey(1) < 0:
135 hasFrame, frame = cap.read()
136 if not hasFrame:
137 print('No frames grabbed!')
138 break
139
140 _frame = cv.cvtColor(frame, cv.COLOR_BGR2RGB)
141 _frame = cv.resize(_frame, dsize=(192, 192))
142
143 # Inference
144 tm.start()
145 result = model.infer(_frame)
146 tm.stop()
147 result = cv.resize(result[0, :, :], dsize=(w, h), interpolation=cv.INTER_NEAREST)
148
149 # Draw results on the input image
150 frame = visualize(frame, result, fps=tm.getFPS())
151
152 # Visualize results in a new window
153 cv.imshow('PPHumanSeg Demo', frame)
154
155 tm.reset()
156
visualize(image, results, box_color=(0, 255, 0), text_color=(0, 0, 255), fps=None)
Definition demo.py:46
get_color_map_list(num_classes)
Definition demo.py:43
int
Definition demo.py:37