| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module DocumentationDarknet is a popular neural network framework. This module first finds the most conspicuous (salient) object in the scene, then identifies it using a deep neural network. It returns the top scoring candidates. See http://ilab.usc.edu/bu/ for more information about saliency detection, and https://pjreddie.com/darknet for more information about the Darknet deep neural network framework. This module runs a Darknet network on an image window around the most salient point and shows the top-scoring results. The network is currently a bit slow, hence it is only run once in a while. Point your camera towards some interesting object, and wait for Darknet to tell you what it found. The framerate figures shown at the bottom left of the display reflect the speed at which each new video frame from the camera is processed, but in this module this just amounts to computing the saliency map from the camera input, converting the input image to RGB, cropping it around the most salient location, sending it to the neural network for processing in a separate thread, and creating the demo display. Actual network inference speed (time taken to compute the predictions on one image crop) is shown at the bottom right. See below for how to trade-off speed and accuracy. Note that by default this module runs the Imagenet1k tiny Darknet (it can also run the slightly slower but a bit more accurate Darknet Reference network; see parameters). There are 1000 different kinds of objects (object classes) that this network can recognize (too long to list here). Sometimes it will make mistakes! The performance of darknet-tiny is about 58.7% correct (mean average precision) on the test set, and Darknet Reference is about 61.1% correct on the test set. This is when running these networks at 224x224 network input resolution (see parameter
Neural network size and speedWhen using networks that are fully convolutional (as is the case for the default networks provided with this module), one can resize the network to any desired input size. The network size direcly affects both speed and accuracy. Larger networks run slower but are more accurate. This module provides two parameters that allow you to adjust this tradeoff:
For example:
Finally note that, when using video mappings with USB output, irrespective of Serial messagesOn every frame where detection results were obtained that are above
See Standardized serial messages formatting for more on standardized serial messages, and Helper functions to convert coordinates from camera resolution to standardized for more info on standardized coordinates. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|