JeVoisBase  1.22
JeVois Smart Embedded Machine Vision Toolkit Base Modules
Share this page:
Loading...
Searching...
No Matches
Darknet.C
Go to the documentation of this file.
1// ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
2//
3// JeVois Smart Embedded Machine Vision Toolkit - Copyright (C) 2017 by Laurent Itti, the University of Southern
4// California (USC), and iLab at USC. See http://iLab.usc.edu and http://jevois.org for information about this project.
5//
6// This file is part of the JeVois Smart Embedded Machine Vision Toolkit. This program is free software; you can
7// redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software
8// Foundation, version 2. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
9// without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
10// License for more details. You should have received a copy of the GNU General Public License along with this program;
11// if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
12//
13// Contact information: Laurent Itti - 3641 Watt Way, HNB-07A - Los Angeles, CA 90089-2520 - USA.
14// Tel: +1 213 740 3527 - itti@pollux.usc.edu - http://iLab.usc.edu - http://jevois.org
15// ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
16/*! \file */
17
19#include <jevois/Core/Module.H>
20#include <opencv2/imgproc/imgproc.hpp>
21#include <darknet-nnpack/src/classifier.h>
22#include <darknet-nnpack/src/option_list.h>
23#include <darknet-nnpack/src/data.h>
24#include <darknet-nnpack/src/network.h>
25#include <stdlib.h> // for free()
26
27// ####################################################################################################
28Darknet::Darknet(std::string const & instance, bool show_detail_params) :
29 jevois::Component(instance), net(nullptr), names(nullptr), classes(0), itsReady(false),
30 itsShowDetailParams(show_detail_params), itsNeedReload(false)
31{
32 // Get NNPACK ready to rock:
33#ifdef NNPACK
34 nnp_initialize();
35#endif
36
37 // Possibly hide some parameters:
38 if (itsShowDetailParams == false)
39 {
40 dataroot::freeze(true);
41 datacfg::freeze(true);
42 cfgfile::freeze(true);
43 weightfile::freeze(true);
44 namefile::freeze(true);
45 }
46}
47
48// ####################################################################################################
50{
51 // Wait until any loading is complete:
53
54#ifdef NNPACK
55 nnp_deinitialize();
56#endif
57}
58
59// ####################################################################################################
60void Darknet::onParamChange(dknet::netw const & param, dknet::Net const & newval)
61{
62 if (itsShowDetailParams == false)
63 {
64 dataroot::freeze(false);
65 datacfg::freeze(false);
66 cfgfile::freeze(false);
67 weightfile::freeze(false);
68 namefile::freeze(false);
69 }
70
71 switch (newval)
72 {
73 case dknet::Net::Reference:
74 dataroot::set(JEVOIS_SHARE_PATH "/darknet/single");
75 datacfg::set("cfg/imagenet1k.data");
76 cfgfile::set("cfg/darknet.cfg");
77 weightfile::set("weights/darknet.weights");
78 namefile::set("");
79 break;
80
81 case dknet::Net::Tiny:
82 dataroot::set(JEVOIS_SHARE_PATH "/darknet/single");
83 datacfg::set("cfg/imagenet1k.data");
84 cfgfile::set("cfg/tiny.cfg");
85 weightfile::set("weights/tiny.weights");
86 namefile::set("");
87 break;
88 }
89
90 if (itsShowDetailParams == false)
91 {
92 dataroot::freeze(true);
93 datacfg::freeze(true);
94 cfgfile::freeze(true);
95 weightfile::freeze(true);
96 namefile::freeze(true);
97 }
98}
99
100// ####################################################################################################
101void Darknet::onParamChange(dknet::dataroot const & param, std::string const & newval) { itsNeedReload.store(true); }
102void Darknet::onParamChange(dknet::datacfg const & param, std::string const & newval) { itsNeedReload.store(true); }
103void Darknet::onParamChange(dknet::cfgfile const & param, std::string const & newval) { itsNeedReload.store(true); }
104void Darknet::onParamChange(dknet::weightfile const & param, std::string const & newval) { itsNeedReload.store(true); }
105void Darknet::onParamChange(dknet::namefile const & param, std::string const & newval) { itsNeedReload.store(true); }
106
107// ####################################################################################################
109{
110 // Start a thread to load the desired network:
111 loadNet();
112}
113
114// ####################################################################################################
116{
117 // Users will neet to wait until last load is done before they load again:
118 if (itsReadyFut.valid())
119 {
120 if (itsReadyFut.wait_for(std::chrono::milliseconds(5)) == std::future_status::ready)
121 try { itsReadyFut.get(); } catch (...) { }
122 else
123 throw std::logic_error("Loading already in progress. Attempt to load again rejected");
124 }
125
126 // Flip itsNeedReload to false so we do not get called several times for the same need to reload:
127 itsNeedReload.store(false);
128
129 // We are not ready anymore:
130 itsReady.store(false);
131
132#ifdef DARKNET_NNPACK
133 if (net && net->threadpool) pthreadpool_destroy(net->threadpool);
134#endif
135 if (net) { free_network(*net); free(net); net = nullptr; }
136
137 // Since loading big networks can take a while, do it in a thread so we can keep streaming video in the
138 // meantime. itsReady will flip to true when the load is complete.
139 itsReadyFut = jevois::async([&]() {
140 std::string root = dataroot::get(); if (root.empty() == false) root += '/';
141
142 // Note: darknet expects read/write pointers to the file names...
143 std::string const datacf = absolutePath(root + datacfg::get());
144 std::string const cfgfil = absolutePath(root + cfgfile::get());
145 std::string const weightfil = absolutePath(root + weightfile::get());
146
147 list * options = read_data_cfg(const_cast<char *>(datacf.c_str()));
148 std::string name_list = namefile::get();
149 if (name_list.empty()) name_list = absolutePath(root + option_find_str(options, "names", "data/names.list"));
150 else name_list = absolutePath(root + name_list);
151
152 LINFO("Using data config from " << datacf);
153 LINFO("Using cfg from " << cfgfil);
154 LINFO("Using weights from " << weightfil);
155 LINFO("Using names from " << name_list);
156
157 LINFO("Getting labels...");
158 names = get_labels(const_cast<char *>(name_list.c_str()));
159 LINFO("Parsing network and loading weights...");
160
161 net = load_network(const_cast<char *>(cfgfil.c_str()), const_cast<char *>(weightfil.c_str()), 0);
162
163 if (net == nullptr)
164 { free_list(options); LFATAL("Failed to load darknet network and/or weights -- ABORT"); }
165
166 classes = option_find_int(options, "classes", 2);
167
168 set_batch_network(net, 1);
169 srand(2222222);
170
171#ifdef DARKNET_NNPACK
172 net->threadpool = pthreadpool_create(threads::get());
173#endif
174 LINFO("Darknet network ready");
175
176 free_list(options);
177
178 // We are ready to rock:
179 itsReady.store(true);
180 });
181}
182
183// ####################################################################################################
185{
186 try { itsReadyFut.get(); } catch (...) { }
187
188 if (net)
189 {
190#ifdef DARKNET_NNPACK
191 if (net->threadpool) pthreadpool_destroy(net->threadpool);
192#endif
193 free_network(*net);
194 free(net);
195 net = nullptr;
196 }
197
198 free_ptrs((void**)names, classes);
199}
200
201// ####################################################################################################
202float Darknet::predict(cv::Mat const & cvimg, std::vector<jevois::ObjReco> & results)
203{
204 if (itsNeedReload.load()) loadNet();
205 if (itsReady.load() == false) throw std::logic_error("not ready yet...");
206 if (cvimg.type() != CV_8UC3) LFATAL("cvimg must have type CV_8UC3 and RGB pixels");
207
208 int const c = 3; // color channels
209 int const w = cvimg.cols;
210 int const h = cvimg.rows;
211 image im = make_image(w, h, c);
212 for (int k = 0; k < c; ++k)
213 for (int j = 0; j < h; ++j)
214 for (int i = 0; i < w; ++i)
215 {
216 int const dst_index = i + w*j + w*h*k;
217 int const src_index = k + c*i + c*w*j;
218 im.data[dst_index] = float(cvimg.data[src_index]) * (1.0F / 255.0F);
219 }
220
221 float predtime = predict(im, results);
222
223 free_image(im);
224
225 return predtime;
226}
227
228// ####################################################################################################
229float Darknet::predict(image & im, std::vector<jevois::ObjReco> & results)
230{
231 if (itsNeedReload.load()) loadNet();
232 if (itsReady.load() == false) throw std::logic_error("not ready yet...");
233 int const topn = top::get();
234 float const th = thresh::get();
235 results.clear();
236
237 // Resize the network if needed:
238 resize_network(net, im.w, im.h);
239
240 // Run the predictions:
241 struct timeval start, stop;
242 gettimeofday(&start, 0);
243 float * predictions = network_predict(*net, im.data);
244 gettimeofday(&stop, 0);
245
246 float predtime = (stop.tv_sec * 1000 + stop.tv_usec / 1000) - (start.tv_sec * 1000 + start.tv_usec / 1000);
247
248 if (net->hierarchy) hierarchy_predictions(predictions, net->outputs, net->hierarchy, 1);
249
250 // Get the top scoring predictions and push them into results:
251 int indexes[topn];
252 top_k(predictions, net->outputs, topn, indexes);
253
254 for (int i = 0; i < topn; ++i)
255 {
256 int const index = indexes[i];
257 float const score = float(predictions[index] * 100);
258 if (score >= th) results.push_back( { score, std::string(names[index]) } );
259 else break;
260 }
261
262 return predtime;
263}
264
265// ####################################################################################################
266void Darknet::resizeInDims(int w, int h)
267{
268 if (itsNeedReload.load()) loadNet();
269 if (itsReady.load() == false) throw std::logic_error("not ready yet...");
270 resize_network(net, w, h);
271}
272
273// ####################################################################################################
274void Darknet::getInDims(int & w, int & h, int & c)
275{
276 if (itsNeedReload.load()) loadNet();
277 if (itsReady.load() == false) throw std::logic_error("not ready yet...");
278 w = net->w; h = net->h; c = net->c;
279}
#define JEVOIS_SHARE_PATH
int h
#define JEVOIS_WAIT_GET_FUTURE(f)
void postInit() override
Initialize, configure and load the network in a thread.
Definition Darknet.C:108
float predict(cv::Mat const &cvimg, std::vector< jevois::ObjReco > &results)
Processing function, results are stored internally in the underlying Darknet network object.
Definition Darknet.C:202
std::future< void > itsReadyFut
Definition Darknet.H:155
network * net
Definition Darknet.H:142
void onParamChange(dknet::netw const &param, dknet::Net const &newval) override
Definition Darknet.C:60
char ** names
Definition Darknet.H:143
void getInDims(int &w, int &h, int &c)
Get input width, height, channels.
Definition Darknet.C:274
bool const itsShowDetailParams
Definition Darknet.H:157
std::atomic< bool > itsNeedReload
Definition Darknet.H:158
virtual ~Darknet()
Virtual destructor for safe inheritance.
Definition Darknet.C:49
void loadNet()
Definition Darknet.C:115
int classes
Definition Darknet.H:144
std::atomic< bool > itsReady
Definition Darknet.H:156
void postUninit() override
Un-initialize and free resources.
Definition Darknet.C:184
void resizeInDims(int w, int h)
Resize the network's input image dims.
Definition Darknet.C:266
Darknet(std::string const &instance, bool show_detail_params=false)
Constructor.
Definition Darknet.C:28
std::filesystem::path absolutePath(std::filesystem::path const &path="")
#define LFATAL(msg)
#define LINFO(msg)
std::future< std::invoke_result_t< std::decay_t< Function >, std::decay_t< Args >... > > async(Function &&f, Args &&... args)