JeVoisBase  1.22
JeVois Smart Embedded Machine Vision Toolkit Base Modules
Share this page:
Loading...
Searching...
No Matches
TensorFlow.H
Go to the documentation of this file.
1// ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
2//
3// JeVois Smart Embedded Machine Vision Toolkit - Copyright (C) 2017 by Laurent Itti, the University of Southern
4// California (USC), and iLab at USC. See http://iLab.usc.edu and http://jevois.org for information about this project.
5//
6// This file is part of the JeVois Smart Embedded Machine Vision Toolkit. This program is free software; you can
7// redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software
8// Foundation, version 2. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
9// without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
10// License for more details. You should have received a copy of the GNU General Public License along with this program;
11// if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
12//
13// Contact information: Laurent Itti - 3641 Watt Way, HNB-07A - Los Angeles, CA 90089-2520 - USA.
14// Tel: +1 213 740 3527 - itti@pollux.usc.edu - http://iLab.usc.edu - http://jevois.org
15// ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
16/*! \file */
17
18#pragma once
19
22#include <jevois/Types/Enum.H>
24#include <atomic>
25
26#include <tensorflow/lite/model.h>
27#include <tensorflow/lite/interpreter.h>
28
29namespace tflow
30{
31 static jevois::ParameterCategory const ParamCateg("TensorFlow Options");
32
33 //! Parameter \relates TensorFlow
34 JEVOIS_DECLARE_PARAMETER_WITH_CALLBACK(netdir, std::string, "Network to load. This should be the name of a "
35 "directory within JEVOIS:/share/tensorflow/ which should contain two files: "
36 "model.tflite and labels.txt",
37 "mobilenet_v1_224_android_quant_2017_11_08", ParamCateg);
38
39 //! Parameter \relates TensorFlow
40 JEVOIS_DECLARE_PARAMETER_WITH_CALLBACK(dataroot, std::string, "Root path for data, config, and weight files. "
41 "If empty, use the module's path.",
42 JEVOIS_SHARE_PATH "/tensorflow", ParamCateg);
43
44 //! Parameter \relates TensorFlow
45 JEVOIS_DECLARE_PARAMETER(top, unsigned int, "Max number of top-scoring predictions that score above thresh to return",
46 5, ParamCateg);
47
48 //! Parameter \relates TensorFlow
49 JEVOIS_DECLARE_PARAMETER(thresh, float, "Threshold (in percent confidence) above which predictions will be reported",
50 20.0F, jevois::Range<float>(0.0F, 100.0F), ParamCateg);
51
52 //! Parameter \relates TensorFlow
53 JEVOIS_DECLARE_PARAMETER(threads, int, "Number of parallel computation threads, or 0 for auto",
54 4, jevois::Range<int>(0, 1024), ParamCateg);
55
56 //! Parameter \relates TensorFlow
57 JEVOIS_DECLARE_PARAMETER(scorescale, float, "Scaling factors applied to recognition scores, useful for InceptionV3",
58 1.0F, ParamCateg);
59}
60
61//! Identify an object using TensorFlow deep neural network
62/*! TensorFlow is a popular neural network framework. This component identifies the object in the given image crop. It
63 returns the top scoring candidates.
64
65 See https://www.tensorflow.org
66
67 TensorFlow is a great deep learning and deep neural network framework. TensorFlow Lite (used here) is optimized for
68 embedded systems like the small JeVois camera because it has a very small footprint and fewer dependencies than
69 other deep neural network frameworks like MXNet, Theano, Keras, PyTorch, etc. In addition, the port of TensorFlow to
70 JeVois includes acceleration using the ARM NEON multimedia instructions.
71
72 \ingroup Components */
74 public jevois::Parameter<tflow::netdir, tflow::dataroot, tflow::top, tflow::thresh, tflow::threads,
75 tflow::scorescale>
76{
77 public:
78 //! Constructor
79 TensorFlow(std::string const & instance);
80
81 //! Initialize, configure and load the network in a thread
82 /*! Any call to predict() will simply throw until the network is loaded and ready */
83 void postInit() override;
84
85 //! Virtual destructor for safe inheritance
86 virtual ~TensorFlow();
87
88 //! Un-initialize and free resources
89 void postUninit() override;
90
91 //! Processing function, results are stored internally in the underlying TensorFlow network object
92 /*! Expects an OpenCV byte RGB (CV_8UC3) or Gray (CV_8UC1) image, which may be further converted to float if that is
93 what the network wants as input. The image dims and number of channels must match the network's input dims and
94 channels. Returns the prediction time (neural net forward pass) in milliseconds. Throws std::logic_error if the
95 network is still loading and not ready. */
96 float predict(cv::Mat const & cvimg, std::vector<jevois::ObjReco> & results);
97
98 //! Get input width, height, channels
99 /*! Throws std::logic_error if the network is still loading and not ready. */
100 void getInDims(int & w, int & h, int & c);
101
102 // We leave these in the open in case one wants to access the probs, names, etc but just be careful with them
103 std::vector<std::string> labels;
104 size_t numlabels; // labels is padded to a multiple of 16; numlabels is the actual unpadded number of labels
105 std::unique_ptr<tflite::FlatBufferModel> model;
106 std::unique_ptr<tflite::Interpreter> interpreter;
107
108 protected:
109 void onParamChange(tflow::netdir const & param, std::string const & newval) override;
110 void onParamChange(tflow::dataroot const & param, std::string const & newval) override;
111 void loadNet();
112 void readLabelsFile(std::string const & fname);
113
114 template <class T>
115 void get_top_n(T * prediction, int prediction_size, std::vector<jevois::ObjReco> & top_results,
116 bool input_floating);
117
118 std::future<void> itsReadyFut;
119 std::atomic<bool> itsReady;
120 std::atomic<bool> itsNeedReload;
121
122 struct JeVoisReporter : public tflite::ErrorReporter
123 {
124 int Report(char const * format, va_list args) override;
125 };
126
128};
int h
Identify an object using TensorFlow deep neural network.
Definition TensorFlow.H:76
std::atomic< bool > itsReady
Definition TensorFlow.H:119
virtual ~TensorFlow()
Virtual destructor for safe inheritance.
Definition TensorFlow.C:56
JEVOIS_DECLARE_PARAMETER(top, unsigned int, "Max number of top-scoring predictions that score above thresh to return", 5, ParamCateg)
Parameter.
void readLabelsFile(std::string const &fname)
Definition TensorFlow.C:71
JeVoisReporter itsErrorReporter
Definition TensorFlow.H:127
float predict(cv::Mat const &cvimg, std::vector< jevois::ObjReco > &results)
Processing function, results are stored internally in the underlying TensorFlow network object.
Definition TensorFlow.C:220
void onParamChange(tflow::netdir const &param, std::string const &newval) override
Definition TensorFlow.C:63
JEVOIS_DECLARE_PARAMETER_WITH_CALLBACK(dataroot, std::string, "Root path for data, config, and weight files. " "If empty, use the module's path.", JEVOIS_SHARE_PATH "/tensorflow", ParamCateg)
Parameter.
JEVOIS_DECLARE_PARAMETER(threads, int, "Number of parallel computation threads, or 0 for auto", 4, jevois::Range< int >(0, 1024), ParamCateg)
Parameter.
std::unique_ptr< tflite::Interpreter > interpreter
Definition TensorFlow.H:106
JEVOIS_DECLARE_PARAMETER(scorescale, float, "Scaling factors applied to recognition scores, useful for InceptionV3", 1.0F, ParamCateg)
Parameter.
void postInit() override
Initialize, configure and load the network in a thread.
Definition TensorFlow.C:89
size_t numlabels
Definition TensorFlow.H:104
JEVOIS_DECLARE_PARAMETER_WITH_CALLBACK(netdir, std::string, "Network to load. This should be the name of a " "directory within JEVOIS:/share/tensorflow/ which should contain two files: " "model.tflite and labels.txt", "mobilenet_v1_224_android_quant_2017_11_08", ParamCateg)
Parameter.
std::future< void > itsReadyFut
Definition TensorFlow.H:118
std::atomic< bool > itsNeedReload
Definition TensorFlow.H:120
void get_top_n(T *prediction, int prediction_size, std::vector< jevois::ObjReco > &top_results, bool input_floating)
Definition TensorFlow.C:97
void postUninit() override
Un-initialize and free resources.
Definition TensorFlow.C:214
void getInDims(int &w, int &h, int &c)
Get input width, height, channels.
Definition TensorFlow.C:296
std::vector< std::string > labels
Definition TensorFlow.H:103
JEVOIS_DECLARE_PARAMETER(thresh, float, "Threshold (in percent confidence) above which predictions will be reported", 20.0F, jevois::Range< float >(0.0F, 100.0F), ParamCateg)
Parameter.
void loadNet()
Definition TensorFlow.C:134
std::unique_ptr< tflite::FlatBufferModel > model
Definition TensorFlow.H:105
int Report(char const *format, va_list args) override
Definition TensorFlow.C:42