JeVoisBase  1.22
JeVois Smart Embedded Machine Vision Toolkit Base Modules
Share this page:
Loading...
Searching...
No Matches
Yolo.C
Go to the documentation of this file.
1// ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
2//
3// JeVois Smart Embedded Machine Vision Toolkit - Copyright (C) 2017 by Laurent Itti, the University of Southern
4// California (USC), and iLab at USC. See http://iLab.usc.edu and http://jevois.org for information about this project.
5//
6// This file is part of the JeVois Smart Embedded Machine Vision Toolkit. This program is free software; you can
7// redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software
8// Foundation, version 2. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
9// without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
10// License for more details. You should have received a copy of the GNU General Public License along with this program;
11// if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
12//
13// Contact information: Laurent Itti - 3641 Watt Way, HNB-07A - Los Angeles, CA 90089-2520 - USA.
14// Tel: +1 213 740 3527 - itti@pollux.usc.edu - http://iLab.usc.edu - http://jevois.org
15// ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
16/*! \file */
17
19#include <jevois/Core/Module.H>
20#include <darknet-nnpack/src/classifier.h>
21#include <darknet-nnpack/src/option_list.h>
22#include <darknet-nnpack/src/data.h>
23#include <darknet-nnpack/src/network.h>
24#include <darknet-nnpack/src/utils.h>
25#include <stdlib.h> // for free()
26
27// ####################################################################################################
28Yolo::Yolo(std::string const & instance) : jevois::Component(instance), net(nullptr), names(nullptr), nboxes(0),
29 dets(nullptr), classes(0), map(nullptr), itsReady(false)
30{
31 // Get NNPACK ready to rock:
32#ifdef NNPACK
33 nnp_initialize();
34#endif
35}
36
37// ####################################################################################################
39{
40#ifdef NNPACK
41 nnp_deinitialize();
42#endif
43}
44
45// ####################################################################################################
47{
49 std::string root = dataroot::get(); if (root.empty() == false) root += '/';
50
51 // Note: darknet expects read/write pointers to the file names...
52 std::string const datacf = absolutePath(root + datacfg::get());
53 std::string const cfgfil = absolutePath(root + cfgfile::get());
54 std::string const weightfil = absolutePath(root + weightfile::get());
55
56 list * options = read_data_cfg(const_cast<char *>(datacf.c_str()));
57 std::string name_list = namefile::get();
58 if (name_list.empty()) name_list = absolutePath(root + option_find_str(options, "names", "data/names.list"));
59 else name_list = absolutePath(root + name_list);
60
61 LINFO("Using data config from " << datacf);
62 LINFO("Using cfg from " << cfgfil);
63 LINFO("Using weights from " << weightfil);
64 LINFO("Using names from " << name_list);
65
66 LINFO("Getting labels...");
67 names = get_labels(const_cast<char *>(name_list.c_str()));
68
69 char * mapf = option_find_str(options, "map", 0);
70 if (mapf) map = read_map(mapf);
71
72 LINFO("Parsing network and loading weights...");
73
74 net = load_network(const_cast<char *>(cfgfil.c_str()), const_cast<char *>(weightfil.c_str()), 0);
75
76 if (net == nullptr)
77 {
78 free_list(options);
79 if (map) { free(map); map = nullptr; }
80 LFATAL("Failed to load YOLO network and/or weights -- ABORT");
81 }
82
83 classes = option_find_int(options, "classes", 2);
84
85 set_batch_network(net, 1);
86 srand(2222222);
87 LINFO("YOLO network ready");
88
89#ifdef DARKNET_NNPACK
90 net->threadpool = pthreadpool_create(threads::get());
91#endif
92 free_list(options);
93 itsReady.store(true);
94 });
95}
96
97// ####################################################################################################
99{
100 if (itsReadyFut.valid()) try { itsReadyFut.get(); } catch (...) { }
101
102 if (dets) { free_detections(dets, nboxes); dets = nullptr; nboxes = 0; }
103
104 if (map) { free(map); map = nullptr; }
105
106 if (net)
107 {
108#ifdef DARKNET_NNPACK
109 if (net->threadpool) pthreadpool_destroy(net->threadpool);
110#endif
111 free_network(*net);
112 free(net);
113 net = nullptr;
114 }
115
116 free_ptrs((void**)names, classes);
117 names = nullptr; classes = 0;
118}
119
120// ####################################################################################################
121float Yolo::predict(cv::Mat const & cvimg)
122{
123 if (itsReady.load() == false) throw std::logic_error("not ready yet...");
124 if (cvimg.type() != CV_8UC3) LFATAL("cvimg must have type CV_8UC3 and RGB pixels");
125
126 int const c = 3; // color channels
127 int const w = cvimg.cols;
128 int const h = cvimg.rows;
129
130 image im = make_image(w, h, c);
131 for (int k = 0; k < c; ++k)
132 for (int j = 0; j < h; ++j)
133 for (int i = 0; i < w; ++i)
134 {
135 int dst_index = i + w*j + w*h*k;
136 int src_index = k + c*i + c*w*j;
137 im.data[dst_index] = float(cvimg.data[src_index]) / 255.0F;
138 }
139
140 float predtime = predict(im);
141
142 free_image(im);
143
144 return predtime;
145}
146
147// ####################################################################################################
148float Yolo::predict(image & im)
149{
150 image sized; bool need_free = false;
151 if (im.w == net->w && im.h == net->h) sized = im;
152 else { sized = letterbox_image(im, net->w, net->h); need_free = true; }
153
154 struct timeval start, stop;
155
156 gettimeofday(&start, 0);
157 network_predict(*net, sized.data);
158 gettimeofday(&stop, 0);
159
160 float predtime = (stop.tv_sec * 1000 + stop.tv_usec / 1000) - (start.tv_sec * 1000 + start.tv_usec / 1000);
161
162 if (need_free) free_image(sized);
163
164 return predtime;
165}
166
167// ####################################################################################################
168void Yolo::computeBoxes(int inw, int inh)
169{
170 layer & l = net->layers[net->n-1];
171
172 if (dets) { free_detections(dets, nboxes); dets = nullptr; nboxes = 0; }
173
174 dets = get_network_boxes(net, 1, 1, thresh::get() * 0.01F, hierthresh::get() * 0.01F, map, 0, &nboxes, 1);
175
176 float const nmsval = nms::get() * 0.01F;
177
178 if (nmsval) do_nms_sort(dets, nboxes, l.classes, nmsval);
179}
180
181// ####################################################################################################
182void Yolo::drawDetections(jevois::RawImage & outimg, int inw, int inh, int xoff, int yoff)
183{
184 float const thval = thresh::get();
185
186 for (int i = 0; i < nboxes; ++i)
187 {
188 // For each detection, We need to get a list of labels and probabilities, sorted by score:
189 std::vector<jevois::ObjReco> data;
190
191 for (int j = 0; j < classes; ++j)
192 {
193 float const p = dets[i].prob[j] * 100.0F;
194 if (p > thval) data.push_back( { p, std::string(names[j]) } );
195 }
196
197 // End here if nothing above threshold:
198 if (data.empty()) continue;
199
200 // Sort in descending order:
201 std::sort(data.begin(), data.end(), [](auto a, auto b) { return (b.score < a.score); });
202
203 // Create our display label:
204 std::string labelstr;
205 for (auto const & d : data)
206 {
207 if (labelstr.empty() == false) labelstr += ", ";
208 labelstr += jevois::sformat("%s:%.1f", d.category.c_str(), d.score);
209 }
210
211 box const & b = dets[i].bbox;
212
213 int const left = std::max(xoff, int(xoff + (b.x - b.w / 2.0F) * inw + 0.499F));
214 int const bw = std::min(inw, int(b.w * inw + 0.499F));
215 int const top = std::max(yoff, int(yoff + (b.y - b.h / 2.0F) * inh + 0.499F));
216 int const bh = std::min(inh, int(b.h * inh + 0.499F));
217
218 jevois::rawimage::drawRect(outimg, left, top, bw, bh, 2, jevois::yuyv::LightGreen);
219 jevois::rawimage::writeText(outimg, labelstr,
221 }
222}
223
224// ####################################################################################################
225void Yolo::sendSerial(jevois::StdModule * mod, int inw, int inh)
226{
227 float const thval = thresh::get();
228
229 for (int i = 0; i < nboxes; ++i)
230 {
231 // For each detection, We need to get a list of labels and probabilities, sorted by score:
232 std::vector<jevois::ObjReco> data;
233
234 for (int j = 0; j < classes; ++j)
235 {
236 float const p = dets[i].prob[j] * 100.0F;
237 if (p > thval) data.push_back({ p, std::string(names[j]) });
238 }
239
240 // End here if nothing above threshold:
241 if (data.empty()) continue;
242
243 // Sort in descending order:
244 std::sort(data.begin(), data.end(), [](auto a, auto b) { return (b.score < a.score); });
245
246 box const & b = dets[i].bbox;
247
248 int const left = (b.x - b.w / 2.0F) * inw;
249 int const bw = b.w * inw;
250 int const top = (b.y - b.h / 2.0F) * inh;
251 int const bh = b.h * inh;
252
253 mod->sendSerialObjDetImg2D(inw, inh, left, top, bw, bh, data);
254 }
255}
256
257// ####################################################################################################
258void Yolo::resizeInDims(int w, int h)
259{
260 if (itsReady.load() == false) throw std::logic_error("not ready yet...");
261 resize_network(net, w, h);
262}
263
264// ####################################################################################################
265void Yolo::getInDims(int & w, int & h, int & c) const
266{
267 if (itsReady.load() == false) throw std::logic_error("not ready yet...");
268 w = net->w; h = net->h; c = net->c;
269}
int h
int classes
Definition Yolo.H:149
void drawDetections(jevois::RawImage &outimg, int inw, int inh, int xoff, int yoff)
Draw the detections.
Definition Yolo.C:182
void sendSerial(jevois::StdModule *mod, int inw, int inh)
Send serial messages about detections.
Definition Yolo.C:225
detection * dets
Definition Yolo.H:148
void computeBoxes(int inw, int inh)
Compute the boxes.
Definition Yolo.C:168
void resizeInDims(int w, int h)
Resize the network's input image dims.
Definition Yolo.C:258
std::future< void > itsReadyFut
Definition Yolo.H:153
network * net
Definition Yolo.H:145
char ** names
Definition Yolo.H:146
float predict(cv::Mat const &cvimg)
Processing function, results are stored internally in the underlying Darknet network object.
Definition Yolo.C:121
std::atomic< bool > itsReady
Definition Yolo.H:154
void postUninit() override
Un-initialize and free resources.
Definition Yolo.C:98
int nboxes
Definition Yolo.H:147
void getInDims(int &w, int &h, int &c) const
Get input width, height, channels.
Definition Yolo.C:265
void postInit() override
Initialize, configure and load the network in a thread.
Definition Yolo.C:46
virtual ~Yolo()
Virtual destructor for safe inheritance.
Definition Yolo.C:38
Yolo(std::string const &instance)
Constructor.
Definition Yolo.C:28
int * map
Definition Yolo.H:150
std::filesystem::path absolutePath(std::filesystem::path const &path="")
void sendSerialObjDetImg2D(unsigned int camw, unsigned int camh, float x, float y, float w, float h, std::vector< ObjReco > const &res)
#define LFATAL(msg)
#define LINFO(msg)
void writeText(RawImage &img, std::string const &txt, int x, int y, unsigned int col, Font font=Font6x10)
void drawRect(RawImage &img, int x, int y, unsigned int w, unsigned int h, unsigned int thick, unsigned int col)
std::future< std::invoke_result_t< std::decay_t< Function >, std::decay_t< Args >... > > async(Function &&f, Args &&... args)
std::string sformat(char const *fmt,...) __attribute__((format(__printf__
unsigned short constexpr LightGreen