JeVoisBase  1.22
JeVois Smart Embedded Machine Vision Toolkit Base Modules
Share this page:
Loading...
Searching...
No Matches
DNN.C
Go to the documentation of this file.
1// ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
2//
3// JeVois Smart Embedded Machine Vision Toolkit - Copyright (C) 2016 by Laurent Itti, the University of Southern
4// California (USC), and iLab at USC. See http://iLab.usc.edu and http://jevois.org for information about this project.
5//
6// This file is part of the JeVois Smart Embedded Machine Vision Toolkit. This program is free software; you can
7// redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software
8// Foundation, version 2. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
9// without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
10// License for more details. You should have received a copy of the GNU General Public License along with this program;
11// if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
12//
13// Contact information: Laurent Itti - 3641 Watt Way, HNB-07A - Los Angeles, CA 90089-2520 - USA.
14// Tel: +1 213 740 3527 - itti@pollux.usc.edu - http://iLab.usc.edu - http://jevois.org
15// ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
16/*! \file */
17
18#include <jevois/Core/Module.H>
19#include <jevois/Debug/Timer.H>
21#include <jevois/DNN/Pipeline.H>
22
23// icon from opencv
24
25//! Detect and recognize multiple objects in scenes using OpenCV, NPU, TPU, or VPU Deep Neural Nets
26/*! This module runs a deep neural network using the OpenCV #DNN library. Classification networks try to identify the
27 whole object or scene in the field of view, and return the top scoring object classes. Detection networks analyze a
28 scene and produce a number of bounding boxes around detected objects, together with identity labels and confidence
29 scores for each detected box. Semantic segmentation networks create a pixel-by-pixel mask which assigns a class
30 label to every location in the camera view.
31
32 To select a network, see parameter \p pipe of component Pipeline.
33
34 The following keys are used in the JeVois-Pro GUI (\p pipe parameter of Pipeline component):
35
36 - **OpenCV:** network loaded by OpenCV #DNN framework and running on CPU.
37 - **ORT:** network loaded by ONNX-Runtime framework and running on CPU.
38 - **NPU:** network running native on the JeVois-Pro integrated 5-TOPS NPU (neural processing unit).
39 - **SPU:** network running on the optional 26-TOPS Hailo8 SPU accelerator (stream processing unit).
40 - **TPU:** network running on the optional 4-TOPS Google Coral TPU accelerator (tensor processing unit).
41 - **VPU:** network running on the optional 1-TOPS MyriadX VPU accelerator (vector processing unit).
42 - **NPUX:** network loaded by OpenCV and running on NPU via the TIM-VX OpenCV extension. To run efficiently, network
43 should have been quantized to int8, otherwise some slow CPU-based emulation will occur.
44 - **VPUX:** network optimized for VPU but running on CPU if VPU is not available. Note that VPUX entries are
45 automatically created by scanning all VPU entries and changing their target from Myriad to CPU, if a VPU
46 accelerator is not detected. If a VPU is detected, then VPU models are listed and VPUX ones are not.
47 VPUX emulation runs on the JeVois-Pro CPU using the Arm Compute Library to provide efficient implementation
48 of various network layers and operations.
49
50 For expected network speed, see \subpage JeVoisProBenchmarks
51
52 Serial messages
53 ---------------
54
55 For classification networks, when object classes are found with confidence scores above \p thresh, a message
56 containing up to \p top category:score pairs will be sent per video frame. Exact message format depends on the
57 current \p serstyle setting and is described in \ref UserSerialStyle. For example, when \p serstyle is \b Detail,
58 this module sends:
59
60 \verbatim
61 DO category:score category:score ... category:score
62 \endverbatim
63
64 where \a category is a category name (from \p namefile) and \a score is the confidence score from 0.0 to 100.0 that
65 this category was recognized. The pairs are in order of decreasing score.
66
67 See \ref UserSerialStyle for more on standardized serial messages, and \ref coordhelpers for more info on
68 standardized coordinates.
69
70 For object detection networks, when detections are found which are above threshold, one message will be sent for
71 each detected object (i.e., for each box that gets drawn when USB outputs are used), using a standardized 2D
72 message:
73 + Serial message type: \b 2D
74 + `id`: the category of the recognized object, followed by ':' and the confidence score in percent
75 + `x`, `y`, or vertices: standardized 2D coordinates of object center or corners
76 + `w`, `h`: standardized object size
77 + `extra`: any number of additional category:score pairs which had an above-threshold score for that box
78
79 See \ref UserSerialStyle for more on standardized serial messages, and \ref coordhelpers for more info on
80 standardized coordinates.
81
82 @author Laurent Itti
83
84 @displayname DNN
85 @videomapping NONE 0 0 0.0 YUYV 640 480 15.0 JeVois DNN
86 @videomapping YUYV 640 498 15.0 YUYV 640 480 15.0 JeVois DNN
87 @email itti\@usc.edu
88 @address University of Southern California, HNB-07A, 3641 Watt Way, Los Angeles, CA 90089-2520, USA
89 @copyright Copyright (C) 2018 by Laurent Itti, iLab and the University of Southern California
90 @mainurl http://jevois.org
91 @supporturl http://jevois.org/doc
92 @otherurl http://iLab.usc.edu
93 @license GPL v3
94 @distribution Unrestricted
95 @restrictions None
96 \ingroup modules */
97class DNN : public jevois::StdModule
98{
99 public:
100 // ####################################################################################################
101 //! Constructor
102 // ####################################################################################################
103 DNN(std::string const & instance) : jevois::StdModule(instance)
104 {
105 itsPipeline = addSubComponent<jevois::dnn::Pipeline>("pipeline");
106 }
107
108 // ####################################################################################################
109 //! Virtual destructor for safe inheritance
110 // ####################################################################################################
111 virtual ~DNN()
112 { }
113
114 // ####################################################################################################
115 //! Processing function implementation
116 // ####################################################################################################
117 void doprocess(jevois::InputFrame const & inframe, jevois::RawImage * outimg,
118 jevois::OptGUIhelper * helper, bool idle)
119 {
120 // If we have a second (scaled) image, assume this is the one we want to process:
121 jevois::RawImage const inimg = inframe.getp();
122
123 // Ok, process it:
124 itsPipeline->process(inimg, this, outimg, helper, idle);
125 }
126
127 // ####################################################################################################
128 //! Processing function, no video output
129 // ####################################################################################################
130 virtual void process(jevois::InputFrame && inframe) override
131 {
132 doprocess(inframe, nullptr, nullptr, false);
133 }
134
135 // ####################################################################################################
136 //! Processing function with video output to USB on JeVois-A33
137 // ####################################################################################################
138 virtual void process(jevois::InputFrame && inframe, jevois::OutputFrame && outframe) override
139 {
140 // Get the input frame:
141 jevois::RawImage const & inimg = inframe.get();
142 unsigned int const w = inimg.width, h = inimg.height;
143
144 // Get the output image:
145 jevois::RawImage outimg = outframe.get();
146
147 // Input and output sizes and format must match:
148 outimg.require("output", w, h, inimg.fmt);
149
150 // Copy input to output:
151 jevois::rawimage::paste(inimg, outimg, 0, 0);
152
153 // Process and draw any results (e.g., detected boxes) into outimg:
154 doprocess(inframe, &outimg, nullptr, false);
155
156 // Send the output image with our processing results to the host over USB:
157 outframe.send();
158 }
159
160#ifdef JEVOIS_PRO
161 // ####################################################################################################
162 //! Processing function with zero-copy and GUI on JeVois-Pro
163 // ####################################################################################################
164 virtual void process(jevois::InputFrame && inframe, jevois::GUIhelper & helper) override
165 {
166 // Compute overall frame rate, CPU usage, etc:
167 static jevois::Timer timer("main", 20, LOG_DEBUG);
168 std::string const & fpscpu = timer.stop();
169 timer.start();
170
171 // Start the display frame: winw, winh will be set by startFrame() to the display size, e.g., 1920x1080
172 unsigned short winw, winh;
173 bool idle = helper.startFrame(winw, winh);
174
175 // Display the camera input frame: if all zeros, x, y, w, h will be set by drawInputFrame() so as to show the
176 // video frame as large as possible and centered within the display (of size winw,winh)
177 int x = 0, y = 0; unsigned short w = 0, h = 0;
178 helper.drawInputFrame("c", inframe, x, y, w, h, true);
179
180 // Process and draw any results (e.g., detected boxes) as OpenGL overlay:
181 doprocess(inframe, nullptr, &helper, idle);
182
183 // Show overall frame rate, CPU, camera resolution, and display resolution, at bottom of screen:
184 helper.iinfo(inframe, fpscpu, winw, winh);
185
186 // Render the image and GUI:
187 helper.endFrame();
188 }
189#endif
190
191 // ####################################################################################################
192 protected:
193 std::shared_ptr<jevois::dnn::Pipeline> itsPipeline;
194};
195
196// Allow the module to be loaded as a shared object (.so) file:
JEVOIS_REGISTER_MODULE(ArUcoBlob)
int h
Detect and recognize multiple objects in scenes using OpenCV, NPU, TPU, or VPU Deep Neural Nets.
Definition DNN.C:98
std::shared_ptr< jevois::dnn::Pipeline > itsPipeline
Definition DNN.C:193
virtual void process(jevois::InputFrame &&inframe) override
Processing function, no video output.
Definition DNN.C:130
virtual void process(jevois::InputFrame &&inframe, jevois::OutputFrame &&outframe) override
Processing function with video output to USB on JeVois-A33.
Definition DNN.C:138
void doprocess(jevois::InputFrame const &inframe, jevois::RawImage *outimg, jevois::OptGUIhelper *helper, bool idle)
Processing function implementation.
Definition DNN.C:117
virtual void process(jevois::InputFrame &&inframe, jevois::GUIhelper &helper) override
Processing function with zero-copy and GUI on JeVois-Pro.
Definition DNN.C:164
virtual ~DNN()
Virtual destructor for safe inheritance.
Definition DNN.C:111
DNN(std::string const &instance)
Constructor.
Definition DNN.C:103
void drawInputFrame(char const *name, InputFrame const &frame, int &x, int &y, unsigned short &w, unsigned short &h, bool noalias=false, bool casync=false)
bool startFrame(unsigned short &w, unsigned short &h)
void iinfo(jevois::InputFrame const &inframe, std::string const &fpscpu, unsigned short winw=0, unsigned short winh=0)
RawImage const & getp(bool casync=false) const
unsigned int fmt
unsigned int width
unsigned int height
void require(char const *info, unsigned int w, unsigned int h, unsigned int f) const
StdModule(std::string const &instance)
std::string const & stop(double *seconds)
void paste(RawImage const &src, RawImage &dest, int dx, int dy)