JeVoisBase  1.22
JeVois Smart Embedded Machine Vision Toolkit Base Modules
Share this page:
Loading...
Searching...
No Matches
lpd_yunet.LPD_YuNet Class Reference

Public Member Functions

 __init__ (self, modelPath, inputSize=[320, 240], confThreshold=0.8, nmsThreshold=0.3, topK=5000, keepTopK=750, backendId=0, targetId=0)
 
 name (self)
 
 setBackend (self, backendId)
 
 setTarget (self, targetId)
 
 setInputSize (self, inputSize)
 
 infer (self, image)
 
 __init__ (self, modelPath, inputSize=[320, 240], confThreshold=0.8, nmsThreshold=0.3, topK=5000, keepTopK=750, backendId=0, targetId=0)
 
 name (self)
 
 setBackend (self, backendId)
 
 setTarget (self, targetId)
 
 setInputSize (self, inputSize)
 
 infer (self, image)
 

Public Attributes

 model_path
 
 input_size
 
 confidence_threshold
 
 nms_threshold
 
 top_k
 
 keep_top_k
 
 backend_id
 
 target_id
 
 output_names
 
 min_sizes
 
 steps
 
 variance
 
 model
 
 priors
 

Protected Member Functions

 _preprocess (self, image)
 
 _postprocess (self, blob)
 
 _priorGen (self)
 
 _decode (self, blob)
 
 _preprocess (self, image)
 
 _postprocess (self, blob)
 
 _priorGen (self)
 
 _decode (self, blob)
 

Detailed Description

Definition at line 6 of file lpd_yunet.py.

Constructor & Destructor Documentation

◆ __init__() [1/2]

lpd_yunet.LPD_YuNet.__init__ (   self,
  modelPath,
  inputSize = [320, 240],
  confThreshold = 0.8,
  nmsThreshold = 0.3,
  topK = 5000,
  keepTopK = 750,
  backendId = 0,
  targetId = 0 
)

Definition at line 7 of file lpd_yunet.py.

◆ __init__() [2/2]

lpd_yunet.LPD_YuNet.__init__ (   self,
  modelPath,
  inputSize = [320, 240],
  confThreshold = 0.8,
  nmsThreshold = 0.3,
  topK = 5000,
  keepTopK = 750,
  backendId = 0,
  targetId = 0 
)

Definition at line 7 of file lpd_yunet.py.

References lpd_yunet.LPD_YuNet._priorGen(), mobilenet_v1.MobileNetV1.backend_id, mobilenet_v2.MobileNetV2.backend_id, lpd_yunet.LPD_YuNet.backend_id, mp_palmdet.MPPalmDet.backend_id, lpd_yunet.LPD_YuNet.confidence_threshold, mobilenet_v1.MobileNetV1.input_size, mobilenet_v2.MobileNetV2.input_size, lpd_yunet.LPD_YuNet.input_size, mp_palmdet.MPPalmDet.input_size, lpd_yunet.LPD_YuNet.keep_top_k, lpd_yunet.LPD_YuNet.min_sizes, TensorFlow.model, mobilenet_v1.MobileNetV1.model, mobilenet_v2.MobileNetV2.model, lpd_yunet.LPD_YuNet.model, mp_palmdet.MPPalmDet.model, PyNetKSNN.PyNetKSNN.model, PyNetOpenCV.PyNetOpenCV.model, PyNetORT.PyNetORT.model, PyNetURetinex.PyNetURetinex.model, PyClassificationDNN.PyClassificationDNN.model, PyCoralClassify.PyCoralClassify.model, PyCoralDetect.PyCoralDetect.model, PyCoralSegment.PyCoralSegment.model, PyDetectionDNN.PyDetectionDNN.model, PyEmotion.PyEmotion.model, PyLicensePlate.PyLicensePlate.model, mobilenet_v1.MobileNetV1.model_path, mobilenet_v2.MobileNetV2.model_path, lpd_yunet.LPD_YuNet.model_path, mp_palmdet.MPPalmDet.model_path, quantize-inc.Quantize.model_path, quantize-ort.Quantize.model_path, lpd_yunet.LPD_YuNet.nms_threshold, mp_palmdet.MPPalmDet.nms_threshold, mobilenet_v1.MobileNetV1.output_names, mobilenet_v2.MobileNetV2.output_names, lpd_yunet.LPD_YuNet.output_names, jevois::DMPdata.steps, lpd_yunet.LPD_YuNet.steps, mobilenet_v1.MobileNetV1.target_id, mobilenet_v2.MobileNetV2.target_id, lpd_yunet.LPD_YuNet.target_id, mp_palmdet.MPPalmDet.target_id, lpd_yunet.LPD_YuNet.top_k, and lpd_yunet.LPD_YuNet.variance.

Member Function Documentation

◆ _decode() [1/2]

◆ _decode() [2/2]

◆ _postprocess() [1/2]

◆ _postprocess() [2/2]

◆ _preprocess() [1/2]

◆ _preprocess() [2/2]

◆ _priorGen() [1/2]

◆ _priorGen() [2/2]

◆ infer() [1/2]

lpd_yunet.LPD_YuNet.infer (   self,
  image 
)

◆ infer() [2/2]

lpd_yunet.LPD_YuNet.infer (   self,
  image 
)

◆ name() [1/2]

lpd_yunet.LPD_YuNet.name (   self)

Definition at line 28 of file lpd_yunet.py.

◆ name() [2/2]

lpd_yunet.LPD_YuNet.name (   self)

Definition at line 28 of file lpd_yunet.py.

◆ setBackend() [1/2]

◆ setBackend() [2/2]

◆ setInputSize() [1/2]

◆ setInputSize() [2/2]

◆ setTarget() [1/2]

◆ setTarget() [2/2]

Member Data Documentation

◆ backend_id

◆ confidence_threshold

lpd_yunet.LPD_YuNet.confidence_threshold

Definition at line 10 of file lpd_yunet.py.

Referenced by lpd_yunet.LPD_YuNet.__init__(), and lpd_yunet.LPD_YuNet._postprocess().

◆ input_size

◆ keep_top_k

lpd_yunet.LPD_YuNet.keep_top_k

Definition at line 13 of file lpd_yunet.py.

Referenced by lpd_yunet.LPD_YuNet.__init__(), and lpd_yunet.LPD_YuNet._postprocess().

◆ min_sizes

lpd_yunet.LPD_YuNet.min_sizes

Definition at line 18 of file lpd_yunet.py.

Referenced by lpd_yunet.LPD_YuNet.__init__(), and lpd_yunet.LPD_YuNet._priorGen().

◆ model

◆ model_path

lpd_yunet.LPD_YuNet.model_path

◆ nms_threshold

lpd_yunet.LPD_YuNet.nms_threshold

◆ output_names

lpd_yunet.LPD_YuNet.output_names

◆ priors

lpd_yunet.LPD_YuNet.priors

Definition at line 109 of file lpd_yunet.py.

Referenced by lpd_yunet.LPD_YuNet._decode(), and lpd_yunet.LPD_YuNet._priorGen().

◆ steps

lpd_yunet.LPD_YuNet.steps

Definition at line 19 of file lpd_yunet.py.

Referenced by lpd_yunet.LPD_YuNet.__init__(), and lpd_yunet.LPD_YuNet._priorGen().

◆ target_id

◆ top_k

lpd_yunet.LPD_YuNet.top_k

Definition at line 12 of file lpd_yunet.py.

Referenced by lpd_yunet.LPD_YuNet.__init__(), and lpd_yunet.LPD_YuNet._postprocess().

◆ variance

lpd_yunet.LPD_YuNet.variance

Definition at line 20 of file lpd_yunet.py.

Referenced by lpd_yunet.LPD_YuNet.__init__(), and lpd_yunet.LPD_YuNet._decode().


The documentation for this class was generated from the following files: