JeVoisBase
1.22
JeVois Smart Embedded Machine Vision Toolkit Base Modules
|
|
Simple DNN network invoked from ONNX-Runtime in python for URetinex-Net. More...
Public Member Functions | |
__init__ (self) | |
[Optional] Constructor | |
init (self) | |
[Optional] JeVois parameters initialization | |
freeze (self, doit) | |
[Optional] Freeze some parameters that should not be changed at runtime | |
load (self) | |
[Required] Load the network from disk | |
process (self, blobs) | |
[Required] Main processing function: process input blobs through network and return output blobs blobs is a list of numpy arrays for the network's outputs Should return a tuple with (list of output blobs, list of info strings), where the info strings could contain some information about the network | |
Public Attributes | |
session | |
dataroot | |
model | |
intensors | |
exposure | |
inputs | |
Simple DNN network invoked from ONNX-Runtime in python for URetinex-Net.
This network expects a fixed 1x1 tensor for a parameter, in addition to the image input
Definition at line 25 of file PyNetURetinex.py.
PyNetURetinex.PyNetURetinex.__init__ | ( | self | ) |
[Optional] Constructor
Definition at line 28 of file PyNetURetinex.py.
PyNetURetinex.PyNetURetinex.freeze | ( | self, | |
doit | |||
) |
[Optional] Freeze some parameters that should not be changed at runtime
Definition at line 58 of file PyNetURetinex.py.
References PyNetKSNN.PyNetKSNN.dataroot, PyNetOpenCV.PyNetOpenCV.dataroot, PyNetORT.PyNetORT.dataroot, PyNetURetinex.PyNetURetinex.dataroot, PyNetURetinex.PyNetURetinex.freeze(), PyNetKSNN.PyNetKSNN.intensors, PyNetOpenCV.PyNetOpenCV.intensors, PyNetORT.PyNetORT.intensors, PyNetURetinex.PyNetURetinex.intensors, TensorFlow.model, mobilenet_v1.MobileNetV1.model, mobilenet_v2.MobileNetV2.model, lpd_yunet.LPD_YuNet.model, mp_palmdet.MPPalmDet.model, PyNetKSNN.PyNetKSNN.model, PyNetOpenCV.PyNetOpenCV.model, PyNetORT.PyNetORT.model, PyNetURetinex.PyNetURetinex.model, PyClassificationDNN.PyClassificationDNN.model, PyCoralClassify.PyCoralClassify.model, PyCoralDetect.PyCoralDetect.model, PyCoralSegment.PyCoralSegment.model, PyDetectionDNN.PyDetectionDNN.model, PyEmotion.PyEmotion.model, and PyLicensePlate.PyLicensePlate.model.
Referenced by PyNetURetinex.PyNetURetinex.freeze().
PyNetURetinex.PyNetURetinex.init | ( | self | ) |
[Optional] JeVois parameters initialization
Definition at line 33 of file PyNetURetinex.py.
PyNetURetinex.PyNetURetinex.load | ( | self | ) |
[Required] Load the network from disk
Definition at line 65 of file PyNetURetinex.py.
References PyNetKSNN.PyNetKSNN.dataroot, PyNetOpenCV.PyNetOpenCV.dataroot, PyNetORT.PyNetORT.dataroot, PyNetURetinex.PyNetURetinex.dataroot, TensorFlow.model, mobilenet_v1.MobileNetV1.model, mobilenet_v2.MobileNetV2.model, lpd_yunet.LPD_YuNet.model, mp_palmdet.MPPalmDet.model, PyNetKSNN.PyNetKSNN.model, PyNetOpenCV.PyNetOpenCV.model, PyNetORT.PyNetORT.model, PyNetURetinex.PyNetURetinex.model, PyClassificationDNN.PyClassificationDNN.model, PyCoralClassify.PyCoralClassify.model, PyCoralDetect.PyCoralDetect.model, PyCoralSegment.PyCoralSegment.model, PyDetectionDNN.PyDetectionDNN.model, PyEmotion.PyEmotion.model, PyLicensePlate.PyLicensePlate.model, PyNetORT.PyNetORT.session, and PyNetURetinex.PyNetURetinex.session.
PyNetURetinex.PyNetURetinex.process | ( | self, | |
blobs | |||
) |
[Required] Main processing function: process input blobs through network and return output blobs blobs is a list of numpy arrays for the network's outputs Should return a tuple with (list of output blobs, list of info strings), where the info strings could contain some information about the network
Definition at line 77 of file PyNetURetinex.py.
References PyNetURetinex.PyNetURetinex.exposure, PyNetORT.PyNetORT.inputs, PyNetURetinex.PyNetURetinex.inputs, PyNetORT.PyNetORT.session, and PyNetURetinex.PyNetURetinex.session.
PyNetURetinex.PyNetURetinex.dataroot |
Definition at line 36 of file PyNetURetinex.py.
Referenced by PyNetKSNN.PyNetKSNN.freeze(), PyNetOpenCV.PyNetOpenCV.freeze(), PyNetORT.PyNetORT.freeze(), PyNetURetinex.PyNetURetinex.freeze(), PyNetKSNN.PyNetKSNN.load(), PyNetOpenCV.PyNetOpenCV.load(), PyNetORT.PyNetORT.load(), and PyNetURetinex.PyNetURetinex.load().
PyNetURetinex.PyNetURetinex.exposure |
Definition at line 52 of file PyNetURetinex.py.
Referenced by PyNetURetinex.PyNetURetinex.process().
PyNetURetinex.PyNetURetinex.inputs |
Definition at line 70 of file PyNetURetinex.py.
Referenced by PyNetKSNN.PyNetKSNN.process(), PyNetORT.PyNetORT.process(), and PyNetURetinex.PyNetURetinex.process().
PyNetURetinex.PyNetURetinex.intensors |
Definition at line 48 of file PyNetURetinex.py.
Referenced by PyNetKSNN.PyNetKSNN.freeze(), PyNetOpenCV.PyNetOpenCV.freeze(), PyNetORT.PyNetORT.freeze(), and PyNetURetinex.PyNetURetinex.freeze().
PyNetURetinex.PyNetURetinex.model |
Definition at line 40 of file PyNetURetinex.py.
Referenced by lpd_yunet.LPD_YuNet.__init__(), PyNetKSNN.PyNetKSNN.freeze(), PyNetOpenCV.PyNetOpenCV.freeze(), PyNetORT.PyNetORT.freeze(), PyNetURetinex.PyNetURetinex.freeze(), mobilenet_v1.MobileNetV1.infer(), mobilenet_v2.MobileNetV2.infer(), lpd_yunet.LPD_YuNet.infer(), mp_palmdet.MPPalmDet.infer(), PyNetKSNN.PyNetKSNN.load(), PyNetOpenCV.PyNetOpenCV.load(), PyNetORT.PyNetORT.load(), PyNetURetinex.PyNetURetinex.load(), PyClassificationDNN.PyClassificationDNN.process(), PyCoralClassify.PyCoralClassify.process(), PyCoralDetect.PyCoralDetect.process(), PyCoralSegment.PyCoralSegment.process(), PyDetectionDNN.PyDetectionDNN.process(), PyCoralClassify.PyCoralClassify.processGUI(), PyCoralDetect.PyCoralDetect.processGUI(), PyCoralSegment.PyCoralSegment.processGUI(), PyLicensePlate.PyLicensePlate.processGUI(), mobilenet_v1.MobileNetV1.setBackend(), mobilenet_v2.MobileNetV2.setBackend(), lpd_yunet.LPD_YuNet.setBackend(), mp_palmdet.MPPalmDet.setBackend(), mobilenet_v1.MobileNetV1.setTarget(), mobilenet_v2.MobileNetV2.setTarget(), lpd_yunet.LPD_YuNet.setTarget(), and mp_palmdet.MPPalmDet.setTarget().
PyNetURetinex.PyNetURetinex.session |
Definition at line 29 of file PyNetURetinex.py.
Referenced by PyNetORT.PyNetORT.load(), PyNetURetinex.PyNetURetinex.load(), PyNetORT.PyNetORT.process(), and PyNetURetinex.PyNetURetinex.process().