JeVois  1.22
JeVois Smart Embedded Machine Vision Toolkit
Share this page:
Loading...
Searching...
No Matches
PostProcessorYuNet.C
Go to the documentation of this file.
1// ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
2//
3// JeVois Smart Embedded Machine Vision Toolkit - Copyright (C) 2021 by Laurent Itti, the University of Southern
4// California (USC), and iLab at USC. See http://iLab.usc.edu and http://jevois.org for information about this project.
5//
6// This file is part of the JeVois Smart Embedded Machine Vision Toolkit. This program is free software; you can
7// redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software
8// Foundation, version 2. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
9// without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
10// License for more details. You should have received a copy of the GNU General Public License along with this program;
11// if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
12//
13// Contact information: Laurent Itti - 3641 Watt Way, HNB-07A - Los Angeles, CA 90089-2520 - USA.
14// Tel: +1 213 740 3527 - itti@pollux.usc.edu - http://iLab.usc.edu - http://jevois.org
15// ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
16/*! \file */
17
20#include <jevois/DNN/Utils.H>
21#include <jevois/Util/Utils.H>
23#include <jevois/Core/Engine.H>
24#include <jevois/Core/Module.H>
26
27#include <opencv2/dnn.hpp>
28
29// ####################################################################################################
30// this code from https://github.com/khadas/OpenCV_NPU_Demo
31namespace jevois { namespace dnn { namespace yunet {
32
33 class PriorBox
34 {
35 public:
36 PriorBox(cv::Size const & input_shape, cv::Size const & output_shape)
37 {
38 // initialize
39 in_w = input_shape.width;
40 in_h = input_shape.height;
41 out_w = output_shape.width;
42 out_h = output_shape.height;
43
44 cv::Size feature_map_2nd { int(int((in_w+1)/2)/2), int(int((in_h+1)/2)/2) };
45 cv::Size feature_map_3rd { int(feature_map_2nd.width/2), int(feature_map_2nd.height/2) };
46 cv::Size feature_map_4th { int(feature_map_3rd.width/2), int(feature_map_3rd.height/2) };
47 cv::Size feature_map_5th { int(feature_map_4th.width/2), int(feature_map_4th.height/2) };
48 cv::Size feature_map_6th { int(feature_map_5th.width/2), int(feature_map_5th.height/2) };
49
50 // feature_map_sizes.push_back(feature_map_2nd);
51 feature_map_sizes.push_back(feature_map_3rd);
52 feature_map_sizes.push_back(feature_map_4th);
53 feature_map_sizes.push_back(feature_map_5th);
54 feature_map_sizes.push_back(feature_map_6th);
55
56 // generate the priors:
57 for (size_t i = 0; i < feature_map_sizes.size(); ++i)
58 {
59 cv::Size feature_map_size = feature_map_sizes[i];
60 std::vector<float> min_size = min_sizes[i];
61
62 for (int _h = 0; _h < feature_map_size.height; ++_h)
63 {
64 for (int _w = 0; _w < feature_map_size.width; ++_w)
65 {
66 for (size_t j = 0; j < min_size.size(); ++j)
67 {
68 float s_kx = min_size[j] / in_w;
69 float s_ky = min_size[j] / in_h;
70
71 float cx = (_w + 0.5) * steps[i] / in_w;
72 float cy = (_h + 0.5) * steps[i] / in_h;
73
74 Box anchor = { cx, cy, s_kx, s_ky };
75 priors.push_back(anchor);
76 }
77 }
78 }
79 }
80 }
81
82 ~PriorBox()
83 { }
84
85 std::vector<Face> decode(cv::Mat const & loc, cv::Mat const & conf, cv::Mat const & iou,
86 float const ignore_score = 0.3)
87 {
88 std::vector<Face> dets; // num * [x1, y1, x2, y2, x_re, y_re, x_le, y_le, x_ml, y_ml, x_n, y_n, x_mr, y_ml]
89
90 float const * loc_v = (float const *)(loc.data);
91 float const * conf_v = (float const *)(conf.data);
92 float const * iou_v = (float const *)(iou.data);
93 for (size_t i = 0; i < priors.size(); ++i)
94 {
95 // get score
96 float cls_score = conf_v[i*2+1];
97 float iou_score = iou_v[i];
98
99 // clamp
100 if (iou_score < 0.f) iou_score = 0.f; else if (iou_score > 1.f) iou_score = 1.f;
101 float score = std::sqrt(cls_score * iou_score);
102
103 // ignore low scores
104 if (score < ignore_score) { continue; }
105
106 Face face;
107 face.score = score;
108
109 // get bounding box
110 float cx = (priors[i].x + loc_v[i*14+0] * variance[0] * priors[i].width) * out_w;
111 float cy = (priors[i].y + loc_v[i*14+1] * variance[0] * priors[i].height) * out_h;
112 float w = priors[i].width * exp(loc_v[i*14+2] * variance[0]) * out_w;
113 float h = priors[i].height * exp(loc_v[i*14+3] * variance[1]) * out_h;
114 float x1 = cx - w / 2;
115 float y1 = cy - h / 2;
116 face.bbox_tlwh = { x1, y1, w, h };
117
118 // get landmarks, loc->[right_eye, left_eye, mouth_left, nose, mouth_right]
119 float x_re = (priors[i].x + loc_v[i*14+ 4] * variance[0] * priors[i].width) * out_w;
120 float y_re = (priors[i].y + loc_v[i*14+ 5] * variance[0] * priors[i].height) * out_h;
121 float x_le = (priors[i].x + loc_v[i*14+ 6] * variance[0] * priors[i].width) * out_w;
122 float y_le = (priors[i].y + loc_v[i*14+ 7] * variance[0] * priors[i].height) * out_h;
123 float x_n = (priors[i].x + loc_v[i*14+ 8] * variance[0] * priors[i].width) * out_w;
124 float y_n = (priors[i].y + loc_v[i*14+ 9] * variance[0] * priors[i].height) * out_h;
125 float x_mr = (priors[i].x + loc_v[i*14+10] * variance[0] * priors[i].width) * out_w;
126 float y_mr = (priors[i].y + loc_v[i*14+11] * variance[0] * priors[i].height) * out_h;
127 float x_ml = (priors[i].x + loc_v[i*14+12] * variance[0] * priors[i].width) * out_w;
128 float y_ml = (priors[i].y + loc_v[i*14+13] * variance[0] * priors[i].height) * out_h;
129 face.landmarks = {
130 {x_re, y_re}, // right eye
131 {x_le, y_le}, // left eye
132 {x_n, y_n }, // nose
133 {x_mr, y_mr}, // mouth right
134 {x_ml, y_ml} // mouth left
135 };
136
137 dets.push_back(face);
138 }
139 return dets;
140 }
141
142 private:
143 std::vector<std::vector<float>> const min_sizes
144 {
145 {10.0f, 16.0f, 24.0f},
146 {32.0f, 48.0f},
147 {64.0f, 96.0f},
148 {128.0f, 192.0f, 256.0f}
149 };
150 std::vector<int> const steps { 8, 16, 32, 64 };
151 std::vector<float> const variance { 0.1, 0.2 };
152
153 int in_w;
154 int in_h;
155 int out_w;
156 int out_h;
157
158 std::vector<cv::Size> feature_map_sizes;
159 std::vector<Box> priors;
160 std::vector<Box> generate_priors();
161 };
162
163 } // namespace yunet
164 } // namespace dnn
165} // namespace jevois
166
167
168// ####################################################################################################
171
172// ####################################################################################################
175
176// ####################################################################################################
177void jevois::dnn::PostProcessorYuNet::process(std::vector<cv::Mat> const & outs, jevois::dnn::PreProcessor * preproc)
178{
179 if (outs.size() != 3) LFATAL("Need exactly 3 outputs, received " << outs.size());
180 if (outs[0].rows < 16 || outs[0].cols != 2) LFATAL("loc size " << outs[0].size() << " instead of 2xN_Anchors");
181 if (outs[1].rows < 16 || outs[1].cols != 1) LFATAL("conf size " << outs[1].size() << " instead of 1xN_Anchors");
182 if (outs[2].rows < 16 || outs[2].cols != 14) LFATAL("iou size " << outs[2].size() << " instead of 14xN_Anchors");
183
184 float const confThreshold = cthresh::get() * 0.01F;
185 float const boxThreshold = dthresh::get() * 0.01F;
186 float const nmsThreshold = nms::get() * 0.01F;
187 itsImageSize = preproc->imagesize();
188
189 // To draw boxes, we will need to:
190 // - scale from [0..1]x[0..1] to blobw x blobh
191 // - scale and center from blobw x blobh to input image w x h, provided by PreProcessor::b2i()
192 // - when using the GUI, we further scale and translate to OpenGL display coordinates using GUIhelper::i2d()
193 // Here we assume that the first blob sets the input size.
194 cv::Size const bsiz = preproc->blobsize(0);
195
196 // Initialize PriorBox on first inference:
197 if (!itsPriorBox) itsPriorBox.reset(new jevois::dnn::yunet::PriorBox(bsiz, bsiz));
198
199 // Get the detections from the raw network outputs:
200 std::vector<jevois::dnn::yunet::Face> dets = itsPriorBox->decode(outs[2], outs[0], outs[1], boxThreshold);
201
202 // NMS
203 itsDetections.clear();
204 if (dets.size() > 1)
205 {
206 std::vector<cv::Rect> face_boxes;
207 std::vector<float> face_scores;
208 for (auto const & d : dets) { face_boxes.push_back(d.bbox_tlwh); face_scores.push_back(d.score); }
209
210 std::vector<int> keep_idx;
211 cv::dnn::NMSBoxes(face_boxes, face_scores, confThreshold, nmsThreshold, keep_idx, 1.f, top::get());
212 for (size_t i = 0; i < keep_idx.size(); i++) itsDetections.emplace_back(dets[keep_idx[i]]);
213 }
214
215 // Now clamp boxes to be within blob, and adjust the boxes from blob size to input image size:
216 for (jevois::dnn::yunet::Face & f : itsDetections)
217 {
218 jevois::dnn::yunet::Box & b = f.bbox_tlwh;
219 jevois::dnn::clamp(b, bsiz.width, bsiz.height);
220
221 cv::Point2f tl = b.tl(); preproc->b2i(tl.x, tl.y);
222 cv::Point2f br = b.br(); preproc->b2i(br.x, br.y);
223 b.x = tl.x; b.y = tl.y; b.width = br.x - tl.x; b.height = br.y - tl.y;
224
225 preproc->b2i(f.landmarks.right_eye.x, f.landmarks.right_eye.y);
226 preproc->b2i(f.landmarks.left_eye.x, f.landmarks.left_eye.y);
227 preproc->b2i(f.landmarks.nose_tip.x, f.landmarks.nose_tip.y);
228 preproc->b2i(f.landmarks.mouth_right.x, f.landmarks.mouth_right.y);
229 preproc->b2i(f.landmarks.mouth_left.x, f.landmarks.mouth_left.y);
230 }
231}
232
233// ####################################################################################################
235 jevois::OptGUIhelper * helper, bool overlay, bool /*idle*/)
236{
237 for (jevois::dnn::yunet::Face const & f : itsDetections)
238 {
239 jevois::dnn::yunet::Box const & b = f.bbox_tlwh;
240 std::string const scorestr = jevois::sformat("face: %.1f%%", f.score * 100.0F);
241
242 // If desired, draw boxes in output image:
243 if (outimg && overlay)
244 {
245 unsigned int const col = jevois::yuyv::LightGreen;
246 unsigned int const rad = 5;
247
248 // Draw the face box:
249 jevois::rawimage::drawRect(*outimg, b.x, b.y, b.width, b.height, 2, col);
250 jevois::rawimage::writeText(*outimg, scorestr, b.x + 6, b.y + 2, col, jevois::rawimage::Font10x20);
251
252 // Draw the face landmarks:
253 jevois::rawimage::drawCircle(*outimg, f.landmarks.right_eye.x, f.landmarks.right_eye.y, rad*2, 2, col);
254 jevois::rawimage::drawCircle(*outimg, f.landmarks.left_eye.x, f.landmarks.left_eye.y, rad*2, 2, col);
255 jevois::rawimage::drawCircle(*outimg, f.landmarks.nose_tip.x, f.landmarks.nose_tip.y, rad, 2, col);
256 jevois::rawimage::drawCircle(*outimg, f.landmarks.mouth_right.x, f.landmarks.mouth_right.y, rad, 2, col);
257 jevois::rawimage::drawCircle(*outimg, f.landmarks.mouth_left.x, f.landmarks.mouth_left.y, rad, 2, col);
258 jevois::rawimage::drawLine(*outimg, f.landmarks.mouth_left.x, f.landmarks.mouth_left.y,
259 f.landmarks.mouth_right.x, f.landmarks.mouth_right.y, 2, col);
260 }
261
262#ifdef JEVOIS_PRO
263 // If desired, draw results on GUI:
264 if (helper)
265 {
266 ImU32 const col = 0x80ff80ff;
267 float const rad = 5.0f;
268
269 // Draw the face box:
270 helper->drawRect(b.x, b.y, b.x + b.width, b.y + b.height, col, true);
271 helper->drawText(b.x + 3.0f, b.y + 3.0f, scorestr.c_str(), col);
272
273 // Draw the face landmarks:
274 helper->drawCircle(f.landmarks.right_eye.x, f.landmarks.right_eye.y, rad*2, IM_COL32(255,0,0,255));
275 helper->drawCircle(f.landmarks.left_eye.x, f.landmarks.left_eye.y, rad*2, IM_COL32(0,0,255,255));
276 helper->drawCircle(f.landmarks.nose_tip.x, f.landmarks.nose_tip.y, rad, IM_COL32(0,255,0,255));
277 helper->drawCircle(f.landmarks.mouth_right.x, f.landmarks.mouth_right.y, rad, IM_COL32(255,0,255,255));
278 helper->drawCircle(f.landmarks.mouth_left.x, f.landmarks.mouth_left.y, rad, IM_COL32(0,255,255,255));
279 helper->drawLine(f.landmarks.mouth_left.x, f.landmarks.mouth_left.y,
280 f.landmarks.mouth_right.x, f.landmarks.mouth_right.y, IM_COL32(255,255,255,255));
281 }
282#else
283 (void)helper; // keep compiler happy
284#endif
285
286 // If desired, send results to serial port:
287 (void)mod;
288 //FIXME if (mod && serreport::get()) mod->sendSerialObjDetImg2D(itsImageSize.width, itsImageSize.height, o);
289 }
290}
int h
Definition GUIhelper.C:2520
cv::Rect2f Box
A face box for YuNet.
Helper class to assist modules in creating graphical and GUI elements.
Definition GUIhelper.H:133
void drawCircle(float x, float y, float r, ImU32 col=IM_COL32(128, 255, 128, 255), bool filled=true)
Draw circle over an image.
Definition GUIhelper.C:598
void drawText(float x, float y, char const *txt, ImU32 col=IM_COL32(128, 255, 128, 255))
Draw text over an image.
Definition GUIhelper.C:624
void drawRect(float x1, float y1, float x2, float y2, ImU32 col=IM_COL32(128, 255, 128, 255), bool filled=true)
Draw rectangular box over an image.
Definition GUIhelper.C:478
void drawLine(float x1, float y1, float x2, float y2, ImU32 col=IM_COL32(128, 255, 128, 255))
Draw line over an image.
Definition GUIhelper.C:472
A raw image as coming from a V4L2 Camera and/or being sent out to a USB Gadget.
Definition RawImage.H:111
unsigned int width
Image width in pixels.
Definition RawImage.H:145
Base class for a module that supports standardized serial messages.
Definition Module.H:234
virtual ~PostProcessorYuNet()
Destructor.
void report(jevois::StdModule *mod, jevois::RawImage *outimg=nullptr, jevois::OptGUIhelper *helper=nullptr, bool overlay=true, bool idle=false) override
Report what happened in last process() to console/output video/GUI.
void process(std::vector< cv::Mat > const &outs, PreProcessor *preproc) override
Process outputs and draw/send some results.
virtual void freeze(bool doit) override
Freeze/unfreeze parameters that users should not change while running.
Pre-Processor for neural network pipeline.
cv::Size const & imagesize() const
Access the last processed image size.
void b2i(float &x, float &y, size_t blobnum=0)
Convert coordinates from blob back to original image.
cv::Size blobsize(size_t num) const
Access the width and height of a given blob, accounting for NCHW or NHWC.
#define LFATAL(msg)
Convenience macro for users to print out console or syslog messages, FATAL level.
Definition Log.H:230
void clamp(cv::Rect &r, int width, int height)
Clamp a rectangle to within given image width and height.
Definition Utils.C:391
void writeText(RawImage &img, std::string const &txt, int x, int y, unsigned int col, Font font=Font6x10)
Write some text in an image.
void drawLine(RawImage &img, int x1, int y1, int x2, int y2, unsigned int thick, unsigned int col)
Draw a line in a YUYV image.
void drawRect(RawImage &img, int x, int y, unsigned int w, unsigned int h, unsigned int thick, unsigned int col)
Draw a rectangle in a YUYV image.
void drawCircle(RawImage &img, int x, int y, unsigned int rad, unsigned int thick, unsigned int col)
Draw a circle in a YUYV image.
std::string sformat(char const *fmt,...) __attribute__((format(__printf__
Create a string using printf style arguments.
Definition Utils.C:440
unsigned short constexpr LightGreen
YUYV color value.
Definition RawImage.H:63
Main namespace for all JeVois classes and functions.
Definition Concepts.dox:2