JeVoisBase  1.22
JeVois Smart Embedded Machine Vision Toolkit Base Modules
Share this page:
Loading...
Searching...
No Matches
ObjectRecognition.C
Go to the documentation of this file.
1// ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
2//
3// JeVois Smart Embedded Machine Vision Toolkit - Copyright (C) 2016 by Laurent Itti, the University of Southern
4// California (USC), and iLab at USC. See http://iLab.usc.edu and http://jevois.org for information about this project.
5//
6// This file is part of the JeVois Smart Embedded Machine Vision Toolkit. This program is free software; you can
7// redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software
8// Foundation, version 2. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
9// without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
10// License for more details. You should have received a copy of the GNU General Public License along with this program;
11// if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
12//
13// Contact information: Laurent Itti - 3641 Watt Way, HNB-07A - Los Angeles, CA 90089-2520 - USA.
14// Tel: +1 213 740 3527 - itti@pollux.usc.edu - http://iLab.usc.edu - http://jevois.org
15// ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
16/*! \file */
17
19#include <jevois/Debug/Log.H>
20#include <fstream>
21
22#include "tiny-dnn/tiny_dnn/tiny_dnn.h"
23
24// ####################################################################################################
25ObjectRecognitionBase::ObjectRecognitionBase(std::string const & instance) :
26 jevois::Component(instance)
27{ }
28
29// ####################################################################################################
32
33// ####################################################################################################
34template <typename NetType>
35ObjectRecognition<NetType>::ObjectRecognition(std::string const & instance) :
36 ObjectRecognitionBase(instance), net(new tiny_dnn::network<NetType>())
37{ }
38
39// ####################################################################################################
40template <typename NetType>
42{
43 // Load from file, if available, otherwise trigger training: NOTE: With tiny-dnn as of September 2017, saving a binary
44 // archive on amd64 host and then loading it back on 32-bit ARM platform fails. So we here save as portable json as
45 // well as binary with a suffix for host vs platform. The first time the platform tries to load the binary, it will
46 // fail, and we will load the json and then overwrite the binary. */
47#ifdef JEVOIS_PLATFORM
48 std::string const wpath = JEVOIS_SHARE_PATH "/tiny-dnn/" + instanceName() + "/weights.tnn.platform";
49#else
50 std::string const wpath = JEVOIS_SHARE_PATH "/tiny-dnn/" + instanceName() + "/weights.tnn.host";
51#endif
52 std::string const jpath = JEVOIS_SHARE_PATH "/tiny-dnn/" + instanceName() + ".json";
53
54 try
55 {
56 net->load(wpath);
57 LINFO("Loaded pre-trained weights and model from " << wpath);
58 }
59 catch (...)
60 {
61 try
62 {
63 net->load(jpath, tiny_dnn::content_type::weights_and_model, tiny_dnn::file_format::json);
64 net->save(wpath);
65 LINFO("Converted and loaded pre-trained weights and model from " << wpath);
66 }
67 catch (...)
68 {
70 LINFO("Could not load pre-trained weights and model from " << wpath << " -- start training...");
71
72 // First define the network (implemented in derived classes):
73 this->define();
74
75 // Then train it:
76 this->train(JEVOIS_SHARE_PATH "/tiny-dnn/" + instanceName());
77
78 // Finally save:
79 LINFO("Saving trained weights to " << wpath);
80 try
81 {
82 net->save(wpath);
83 net->save(jpath, tiny_dnn::content_type::weights_and_model, tiny_dnn::file_format::json);
84 LINFO("Weights saved -- Network ready to work.");
85 }
86 catch (...)
87 {
88 // On host, user may have forgotten to give permissions to /jevois, or to run jevois-daemon as root for
89 // training. Try to save to /tmp instead:
91 LINFO("Saving weights to " << wpath << " failed -- trying /tmp/weights.tnn");
92 try
93 {
94 net->save("/tmp/weights.tnn");
95 net->save("/tmp/weights.tnn.json", tiny_dnn::content_type::weights_and_model,
96 tiny_dnn::file_format::json);
97 LINFO("Weights saved to /tmp/weights.tnn -- Network ready to work.");
98 }
99 catch (...) { jevois::warnAndIgnoreException(); LERROR("Could not save weights..."); }
100 }
101 }
102 }
103}
104
105// ####################################################################################################
106template <typename NetType>
109
110// ####################################################################################################
111template <typename NetType>
112typename tiny_dnn::index3d<size_t> ObjectRecognition<NetType>::insize() const
113{ return (*net)[0]->in_shape()[0]; }
114
115// ####################################################################################################
116template <typename NetType>
118ObjectRecognition<NetType>::process(cv::Mat const & img, bool normalize)
119{
120 auto inshape = (*net)[0]->in_shape()[0];
121
122 if (img.cols != int(inshape.width_) ||
123 img.rows != int(inshape.height_) ||
124 img.channels() != int(inshape.depth_)) LFATAL("Incorrect input image size or format");
125
126 // Convert input image to vec_t with values in [-1..1]:
127 size_t const sz = inshape.size();
128 tiny_dnn::vec_t data(sz);
129 unsigned char const * in = img.data; tiny_dnn::float_t * out = &data[0];
130 for (size_t i = 0; i < sz; ++i) *out++ = (*in++) * (2.0F / 255.0F) - 1.0F;
131
132 // Recognize:
133 if (normalize)
134 {
135 // Get the raw scores:
136 auto scores = net->predict(data);
137
138 // Normalize activation values between 0...100:
139 tiny_dnn::layer * lastlayer = (*net)[net->depth() - 1];
140 std::pair<tiny_dnn::float_t, tiny_dnn::float_t> outrange = lastlayer->out_value_range();
141 tiny_dnn::float_t const mi = outrange.first;
142 tiny_dnn::float_t const ma = outrange.second;
143
144 for (tiny_dnn::float_t & s : scores) s = tiny_dnn::float_t(100) * (s - mi) / (ma - mi);
145
146 return scores;
147 }
148 else
149 return net->predict(data);
150}
151
152// ####################################################################################################
153// Expplicit instantiations:
#define JEVOIS_SHARE_PATH
Abstract base class for an object recognition component.
ObjectRecognitionBase(std::string const &instance)
Constructor.
virtual ~ObjectRecognitionBase()
Virtual destructor for safe inheritance.
std::vector< tiny_dnn::float_t, tiny_dnn::aligned_allocator< tiny_dnn::float_t, 64 > > vec_t
Type used by tiny-dnn for the results:
Wrapper around a neural network implemented by with the tiny-dnn framework by Taiga Nomi.
ObjectRecognition(std::string const &instance)
Constructor allocates the (empty) network.
virtual tiny_dnn::index3d< size_t > insize() const override
Get the input size for the current network, useful to prepare inputs to process()
vec_t process(cv::Mat const &img, bool normalize=true) override
Process an image, results are confidence for each category.
virtual ~ObjectRecognition()
Destructor.
virtual void postInit() override
Initialize the network, required before one starts using it.
#define LFATAL(msg)
std::string warnAndIgnoreException(std::string const &prefix="")
#define LERROR(msg)
#define LINFO(msg)